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A B S T R A C T

Given the recent advances in battery technologies, Battery Electric Vehicles (BEVs) are more in
demand since they are considered a better option than Internal Combustion Engine Vehicles
(ICEVs). There are some drawbacks to using BEVs; for example, driving ranges are shorter
compared to ICEVs, and limited charging station infrastructure may be available in certain parts
of the world. Furthermore, batteries mounted in BEVs are the leading cause of high acquisition
costs, and there are also some technical limitations since the maximum battery capacity degrades
over time. These disadvantages negatively affect the adoption of BEVs.

There is expected to be an increase in BEV adoption around the world since they require less
expensive and less frequent maintenance than ICEVs. A significant problem with BEVs is range
anxiety, and route planning may help mitigate this. BEVs need frequent recharging during
trips, which renders existing route planning methods used for ICEVs infeasible. Limited driving
range, lack of charging stations and possible long charging times of BEVs affects the route choices
significantly. BEV route planning may also lower BEVs’ energy consumption and, consequently,
the travel-cost.

In the thesis, Mixed Integer Linear Programming (MILP) models are proposed to address route
planning for BEVs. Multiple factors such as wind speed and -direction, solar irradiation in the
case of a solar panel mounted on the vehicle, vehicle acceleration and drive-train efficiency are
incorporated to determine optimal routes.

As part of this thesis’s case study, the models are adapted to race strategies for competing in
the Sasol Solar Challenge. The Sasol Solar Challenge is a biennial competition where multiple
teams worldwide design and build solar-powered vehicles to travel across South Africa over
eight days. In recent years, the Sasol Solar Challenge has drawn considerable awareness to the
development of solar-powered vehicles. In the past years, most of the effort focused on the cars’
mechanical quality and efficiency, but teams gave little attention to the race strategy. An important
task is to determine at which stages of the route an automobile should accelerate, decelerate,
or maintain speed to use available energy efficiently. When considering a solar-powered car,
accessible weather- and elevation data for the whole route is a requirement when determining a
race strategy.

The solar-powered vehicle is simulated, using vehicle characteristics, weather- and elevation data,
and an optimisation model to determine the best strategy for a given solar-powered automobile
and route. These simulation- and optimisation models can also help with decisions regarding
the design of solar-powered vehicles. A short-term advantage of this approach is the connection
with current vehicle technologies regarding energy efficiency when travelling a known route, i.e.
a strategy to assist a driver in obtaining better fuel economy.

Keywords: mixed-integer linear programming, sasol solar challenge, battery electric vehicle, route
planning
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1
I N T R O D U C T I O N

1.1 contextualisation

The transportation sector accounts for around 20% of the total energy consumption in South
Africa and 25% worldwide [1, 2]. Route planning may lower a vehicle’s energy consumption
and, consequently, the travel-cost and greenhouse gasses during operation. Given the recent
advances in battery technologies, Battery Electric Vehicles (BEVs) are more in demand since
they are considered a better option than vehicles with internal combustion engines. There
are some drawbacks to using BEVs, such as shorter driving ranges than Internal Combustion
Engine Vehicles (ICEVs) and limited charging station infrastructure in South Africa. Batteries
mounted in BEVs are the leading cause of the high acquisition cost, and there are also some
technical limitations since the maximum battery capacity degrades over time. These disadvantages
negatively affect the adoption of BEVs.

According to Pelletier et al. [3], batteries should be replaced every 5 to 10 years, or after 1000 to
2000 cycles with large State of Charge (SoC) variations. Factors that influence battery degradation
include over-charging, over-discharging, long storage with high SoC, the depth of discharge and
temperatures outside the battery ratings.

In 2016 Grunditz and Thiringer [4] analysed over 40 BEVs which falls into small, medium-large,
high-performing and sports car categories. All the BEVs have lithium-based batteries, with
capacities varying between 12 and 90 kWh with a maximum travelling distance of between 85

and 528 km. The average medium-sized travelling distance was 250 km with a battery capacity of
30 kWh.

Most modern BEVs can recuperate energy during deceleration or when going downhill, as
long as it does not exceed the capacity of the maximum energy capacity of the battery. BEVs
need frequent recharging during trips, which renders existing route planning methods used for
ICEVs infeasible. Limited driving range, lack of charging stations and possible long charging
times of BEVs affects the route choices significantly.

There are financial incentives to use BEVs as a courier service; the authors of [5] noted that
using a large number of BEVs can be more cost-effective than ICEVs. Several factors play a role:
high daily distances, low speeds, frequent stops, traffic congestions, the reduced cost of BEVs by
tax incentives, and long-term planning. Due to financial incentives, BEVs are more likely to be
used for last-mile deliveries since routes are short, stops are frequent, driving speeds are slow, and
production noise is low [6]. Schiffer et al. [7] concluded that for a five-year plan, the operational
limitations for BEVs is a maximum delivery radius of 190 km from the depot due to a lack of
close locations with charging stations.

1.1.1 Problem statement

When a solar panel is attached to a BEV the driving range can potentially extend up to 30%,
resulting in more charging station options [8]. For hybrid vehicles, the fuel economy can improve
up to 60% when a solar panel is attached to the hybrid vehicle, depending on the driving habits
and weather conditions [9]. Manually planning a route for a solar-powered hybrid or BEV is not

1



2 introduction

easy since early decisions affect later decisions. A decision support system would be beneficial for
route planning of solar-powered BEVs.

Most models and algorithms that exist for BEV route planning are heuristic and addresses
the Vehicle Routing Problem (VRP), or only account for a few significant factors that influence
the route choices and cannot easily be extended for solar-powered BEVs [10–17]. These models
and algorithms assume that charging stations (and in one case regenerative braking) is the only
way to charge batteries of BEVs. The main reason these models and algorithm cannot easily be
extended to accommodate solar-power BEV is the lack of time-dependent variables such as solar
irradiation, cloud coverage, wind speed and wind direction at a given time. The current state of
literature is discussed in section 1.1.3 and section 1.1.2.

1.1.2 Related work on the vehicle routing problem

The VRP [16] is closely related to the Travelling Salesman Problem (TSP) [18], since it is a
generalisation of the TSP. The VRP consists of finding a collection of routes from one or several
depots to several geographically scattered cities or customers. The authors of [19] introduced an
exact algorithm that solves the VRP, with capacity and distance constraints. The algorithm does
not include extending the vehicle’s distance limitation by refuelling on the route.

The authors of [17] introduced the green vehicle routing problem, formulated as a Mixed
Integer Linear Programming (MILP) problem, which seeks tours for an alternative fuel vehicle
(AFV), which visits a subset of vertices that may include alternative fuel stations (AFSs). The AFV
starts and ends at the depot, with the objective to minimise the total travelling distance. Erdoğan
and Miller-Hooks [17] used two construction heuristics, the Modified Clarke and Wright Saving
(MCWS) heuristic and the Density-Based Clustering Algorithm (DBCA) with a customised
improvement technique. The MCWS heuristic terminates with a set of tours that forms a feasible
solution to the relaxed MILP problem. The DBCA exploits the problem’s spatial properties, and
builds clusters, the MCWS heuristic runs on each cluster. The authors used two sets of datasets, the
first was 40 test problems with 20 customers, and the larger has 12 test problems, with customers
varying between 111 and 500. The solutions’ feasibility depends on locations of the AFSs and the
subset of vertices (customers) that needs to be visited.

Aurélien et al. [20] proposed an improved MILP formulation that accounts for a more realistic,
non-linear charging relationship between the time spent charging and the energy the battery
gains during the time. The authors developed an arc-based tracking for SoC and time which
outperforms the classic node-based tracking. They presented a heuristic and exact algorithm to
find charging decisions given a route. Their computational experiments show that this alternative
tracking strategy drastically improves the results because the arc-based formulation had a much
tighter Linear Programming (LP) relaxation gap, compared to the node-based formulation.

1.1.3 Related work on route planning for a single vehicle

Umair and Sadiq [13] implemented a Particle Swarm Optimisation (PSO) based algorithm that
can handle multiple constraints for the single-vehicle route planning problem. They compare
the implementation to another heuristic and a Genetic Algorithm (GA) based implementation.
Overall the PSO based algorithm obtained better objective values than the GA implementation
and the heuristic (H_MCOP) proposed by Turgay Korkmaz [21] to solve the multi-constrained
path problem.
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Sweda et al. [14] modelled the problem of finding a minimum-cost path for a BEV when
the vehicle must recharge along the way as a dynamic program. The authors prove that the
optimal state space is discrete under certain assumptions that allow using a simple backwards
recursion algorithm that guarantees an optimal solution. The dynamic program cannot account for
recuperated energy through regenerative braking. The dynamic program is an elegant formulation,
but the assumptions oversimplify the problem and modifications to the model are not trivial.

Artmeier et al. [10] formulated an energy-efficient routing algorithm, which is a particular case
of the Constrained Shortest Path (CSP) problem on an energy graph representing the energy
consumption. The implemented algorithm had a worst-case complexity of O(n3). This approach
does not allow variables to change over time, such as wind speed and -direction.

Eisner et al. [11] consider the problem of electric vehicle route planning, which accounts for
limited energy supply and the ability to recuperate energy. The authors apply the Bellman-Ford
algorithm [22, 23] since the problem has negative weights in the input graphs. They also employ a
generalisation of Johnson’s potential shifting technique [24] to the negative edge cost functions to
make Dijsktra’s algorithm [25] applicable.

The authors of [15] studied the problem of electric vehicle route planning, where an important
aspect is computing paths that minimise energy consumption. The authors introduce a practical
approach to optimise for the energy consumption of a BEV between two locations. The method is
an extension on Customisable Route Planning (CRP) of Delling et al. [26]. The implementation
achieves query times below 5 ms on average and is fast enough for interactive applications.
Although this approach is practical in terms of runtime, it oversimplifies the problem and lacks
wind speed and -direction. It also does not have extensibility, such as accounting for solar-powered
vehicles.

The authors of [27] proposed an integrated route and charging planning for BEVs, and take
partial charging, non-linear charging functions as well as serve time into consideration. The
experimental result shows that it leads to infeasible or excessively costly solutions when ignoring
the partial and non-linear charging process features.

In a recent study, Chen et al. [28] investigated the tour planning problem for BEVs and proposed
a MILP model with bi-objective functions. Initially a non-linear model was given and transformed
into a MILP. The authors made some assumptions that simplifies the problem. A single BEV type
is assumed with constant range, fixed travel time and energy consumption between nodes. The
optimisation model used in [28] is provided in 2.5.1.

1.2 contributions

In this thesis, a path-based and flow conservation MILP model to solve the single-vehicle routing
problem for solar powered BEVs is described and formulated. The advantages and disadvantages
of the different modelling techniques are discussed. Empirical results regarding computation time,
memory usage and solution quality are presented to determine which model is feasible to use as a
decision support tool for route planning and BEV design. The models aim to incorporate as much
detail as possible, with the advantage of extending the models or simulations with ease to solve
closely related problems. The roads on a route are divided into smaller sections, of which time
and velocity-dependent energy graphs are calculated. The base models are extended to account
for energy used when a BEV accelerates. Later the models are also extended to allow charging
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stations to be defined, along with any arbitrary charging function, to accommodate charging
stations with different capacities. Two different methods are used to model energy graphs, and a
comparison between the methods in terms of computation time and solution quality is provided.
The path-based model is transformed into a heuristic to lower the total runtime at the cost of
lower solution quality. The path-based model is changed to determine a race strategy for the Sasol
Solar Challenge. The following is a list of the contributions developed in this thesis;

• a generalised path-based model for solar powered BEVs with Special Ordered Set of Type 3

(SOS3) energy graphs,

• a generalised flow conservation model for solar powered BEVs with SOS3 energy graphs,

• a generalised path-based model for solar powered BEVs with Special Ordered Set of Type 2

(SOS2) energy graphs,

• a generalised flow conservation model for solar powered BEVs with SOS2 energy graphs,

• a heuristic implementation of the path-based model using the k-shortest path algorithm,

• an extended base model to account for the acceleration,

• an extended base model to account for configurable charging stations,

• a modified path-based model to be used as a decision support tool for the Sasol Solar
Challenge.

1.3 summary and thesis layout

This study focuses on route planning for a single BEV, which takes factors into account, such
as the presence of a solar panel, regenerative braking, and acceleration. These extra factors,
especially the solar panel presence, introduce more complexity since they are time-dependent
and significantly influence the recuperation of energy. Most of the work done in the literature
is either a simple model that is exact or more complex but heuristic. Within this thesis, MILP
formulations are proposed that include the extra factors. For that, the necessary details are given
on optimisation theory in Chapter 2 related to the formulation and solutions of MILP problems.
Chapter 3 elaborates on the logic behind the formulation of BEV route planning with some
improvements on the initial formulations. In Chapter 4, different optimisation formulations are
compared by using simulated data; the practicality of these approaches are analysed. Chapter 5

studies the feasibility of the proposed models for the Sasol Solar Challenge, a solar car race where
maximising the total distance over multiple days and geographic locations is the objective. Finally,
Chapter 6 concludes the thesis and highlights future work, such as algorithmic improvements for
scalability and usability of the models in other areas.



2
O P T I M I S AT I O N T H E O RY

2.1 introduction and chapter overview

This chapter gives a brief introduction to the mathematical and algorithmic concepts used in the
thesis. Section 2.1.1 provides an introduction to an overview of exact and heuristic algorithms used
in optimisation. Throughout the thesis, we focus more on models solved with exact algorithms,
such as Linear Programming (LP) models solved with the simplex method. Specialised heuristic
algorithms can be used to find feasible or partial solutions to NP-complete problems. NP-
complete is a class which contains problems where there is no known way to find solutions
efficiently, but the solutions can be verified quickly (polynomial time). We elaborate on different
complexity classes in Section 2.2. Section 2.3 covers the basic concepts of linear programming,
integer linear programming, and algorithms to solve linear programs and integer linear programs.
The input data is modelled as directed graphs, which suffices an introduction to the basic concepts
of graph theory. This chapter may be used as a reference for notation, especially Section 2.5. The
reader may skip these concepts if familiar with the content.

2.1.1 Optimisation

The simplest case of optimisation consists of minimising or maximising a real function by
systematically selecting from an allowed set of inputs I and choosing the best input. Given
a function f : I → R we seek an element x∗ ∈ I such that f (x∗) ≤ f (x) for all x ∈ I
in minimisation problems, and f (x∗) ≥ f (x) for all x ∈ I in maximisation problems. The
corresponding minimisation mathematical program is:

min
x

f (x)

subject to x ∈ I .
(2.1)

It is important to distinguish between local- and global optima since some algorithms cannot
guarantee optimality. A point x∗ is considered a local minimum if there exists some ε > 0
such that, for all x ∈ I within a distance ε of x∗, f (x∗) ≤ f (x). With the latter statement,
when f (x∗) ≥ f (x), the point x∗ is considered a local maximum.

When complete search space is explored, the global optima can be determined. For a minimisa-
tion problem, a point x∗ is considered the global minimum if f (x∗) ≤ f (x) for all x ∈ I . For a
maximisation problem, a point x∗ is considered the global maximum if f (x∗) ≥ f (x) for all x ∈ I .
Figure 1 is a graphical representation of these statements.

Heuristic Algorithms and Meta-Heuristics

When the complexity of a problem is too high, e.g., if it is not solvable to optimality given a certain
amount of time, heuristic algorithms are preferred [29]. Some specialised heuristic algorithms can
compute near-optimal and sometimes optimal solutions, but there is no solution quality guarantee.
Even if a heuristic algorithm results in an optimal solution by accident, there is no way to prove
optimality with a heuristic algorithm. A heuristic algorithm does not explore the complete search
space that globally improves an objective function.

5



6 optimisation theory

f (x)

x

Local maximum

Local minimum

Global maximum

Global minimum

Figure 1: Local- and global optima for f (x).

Heuristic algorithms are problem-specific algorithms, created to solve a particular problem,
while meta-heuristics are general-purpose algorithms that can be applied to solve optimisation
problems, e.g. evolutionary algorithms. Genetic Algorithms (GAs) are the most common evolu-
tionary algorithms used, based on the principle of natural selection. These types of algorithms
were first introduced by [30]. GAs offer significant benefits for optimisation problems since the
transformation between Integer Linear Programming (ILP) model and a GA variant is trivial. GAs
simulate survival of the fittest among individuals within a population. Initially, the algorithm
generates a random population; then the algorithm uses three operators to improve the solu-
tion. The algorithm calculates the fitness value of each individual via a fitness function, which
is normally the same as the objective function of a similar linear programming problem. The
probability of survival is higher for individuals with a better fitness value. The goal of the
selection operator is to reduce the population by removing individuals with a stochastic function.
The cross-over operator chooses two solutions and mixes the genomes to produce an offspring
solution. Random alterations of the genome are considered mutations. The algorithm alters new
genomes generated by cross-over operations, usually with a low mutation rate. The mutation
decreases the chance a new solution gets stuck in a local optimum. Other meta-heuristics include
simulated annealing [31], iterated local search [32], ant colony optimisation [33] and particle
swarm optimisation [34].

Exact Algorithms

Throughout this thesis, we are interested in models and methods that guarantee optimality, or
atleast provide a quantification of solution quality. When heuristics do feature in this thesis, they
are used in correspondence with an exact algorithm, e.g. using heuristic solutions to warm-start
exact algorithms. Exact algorithms guarantee solution quality and terminate once an optimal
solution is proven. Exact algorithms explore the entire search space that improves the current
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objective function. For arbitrary non-linear problems, proving optimality is not easy, but for
specific linear problems, it is possible. When the constraints of the optimisation problem form a
convex polytope in Rn

+, and the objective function is also linear; we can prove optimality once an
objective value can no longer improve. More details are given in Section 2.3.

2.2 computational complexity

The algorithms used to interpret and execute the implementation of a mathematical optimisation
model, whether heuristic or exact, have some computational complexity associated with them [35].
Space- and time-limited computations, given an abstract model of computation, are the measure
of these complexities.

Alan Turing introduced the concept of an abstract model of computation, which manipulates
data elements on a vector of data according to a table of rules [36]. A Turing machine is considered
deterministic when each state can only result in a single action, whereas with a non-deterministic
Turing machine each state can result in multiple actions, which results in multiple states, this is
illustrated with Figure 2.

. . .. . . . . .

Non DeterministicDeterministic

f (n) f (n)

accept or reject

reject

accept

reject

accept

reject

Figure 2: Visualisation of states and actions of a deterministic Turing machine (left) and a non-deterministic
Turing machine (right) [37].

Many complexity classes are defined in terms of DTIME, which contains all the problems that
can be solved in limited time with a deterministic Turing machine, given by the function f (n).
The complexity class in DTIME for function f (n) is expressed as DTIME( f (n)).

definition 1: The complexity class P is a set of all problems that can be solved with a
deterministic Turing machine in DTIME, and expressed as a polynomial function of DTIME,

P =
⋃

k∈N

DTIME(nk).

Complexity classes for non-deterministic Turing machines that can be solved in limited time
are described in NTIME.



8 optimisation theory

definition 2: The complexity class NP is a set of all problems that can be solved with a
non-deterministic Turing machine in NTIME, and can be expressed as a polynomial function of
NTIME,

NP =
⋃

k∈N

NTIME(nk).

An important property of problems in P and NP , is the ability to verify the solution using a
deterministic Turing machine in polynomial time. The problems in NP contain all the solvable
problems in P , but there exist problems harder than the problems in NP , e.g. problems we
cannot verify in polynomial time with a deterministic Turing machine, which we call NP-hard
problems. The class NP-complete is defined as the hardest problems in NP since solutions to
these problems can be verified in polynomial time with a deterministic Turing machine, but are
only solvable in polynomial time with a non-deterministic Turing machine. The unsolved problem
of P versus NP , ask whether the solution to any problem that we can verify in polynomial time
can also be solved in polynomial time. Figure 3 illustrates the effect of P = NP , and P 6= NP
would have on the complexity classes with an Euler diagram.

C
om

pl
ex

it
y

P 6= NP P = NP

NP-Hard

NP-Complete

P

NP

NP-Hard

P = NP = NP-Complete

Figure 3: Euler diagram for complexity classes P , NP , NP-complete, and NP-hard, when P 6= NP
(left) and P = NP (right).

The big O notation classifies the complexity of algorithms for a Turing machine, usually
describing the dominant order at which the worst-case running time and space requirements
grow as the input size n increase. Associated with the big O notation are several types of other
bounds on asymptotic growth rates, such as best-case analysis [38]. The worst-case analysis has
been criticised for being too pessimistic since it ignores the correlated effects of the operation on
data structures. An alternative is an average-case analysis, but it requires some notion of devising
a probability distribution over inputs, which entails the collection of input data. In such a case,
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the average-case complexity may be more accurate than the worst-case analysis [39]. Tarjan [40]
addressed the probabilistic methods of complexity analysis with a method to consider expensive
and cheap operations over the whole series of operations of an algorithm; this method is known
as amortised complexity analysis.

2.3 linear programming

In this section, we discuss the underlying principles on which the mathematical models from
Chapter 3 and Chapter 5 are based on. Firstly, we give a brief introduction to linear programming,
which includes the theory of duality, the simplex method, and finally the branch and bound (B&B)
and branch and cut algorithm for integer programs.

A linear program maximises or minimises a linear objective function with linear inequality or
equality constraints. The general linear program can be described as,

pLP = max{cTx : Ax ≤ b, x ∈ Rn
+} (2.2)

where A is an m × n matrix, cT is a row vector with n elements, b is a column vector with
dimension m and x is a column vector with dimension n. It is important to mention that any
linear equality can be replaced with two linear inequalities, e.g.

c1x1 + c2x2 = b1 (2.3)

can be replaced with

−c1x1 − c2x2 ≤ −b1,

c1x1 + c2x2 ≤ b1,
(2.4)

∀ x1, x2 ∈ R+.

2.3.1 Duality

Duality theory applies to general linear programs and explores the relationship between the
solutions of paired linear programs. One problem is called the primal, and the other the dual. It
does not matter which problem is called the primal, since the dual of a dual is the primal, but for
demonstration, we use the symmetrical linear program (2.2) as the primal problem. The dual is
then defined as

dLP = min{bTy : ATy ≥ cT, y ∈ Rm
+}, (2.5)

where y is a column vector with dimension m. Feasible solutions to the dual problem provide an
upper-bound to the primal problem pLP and feasible solutions to the primal give lower-bounds
to the dual dLP. If the primal has an unbounded optimal value, the dual is infeasible. These
properties are described by the following well-known theorem:

theorem 1 (duality theorem): Duality theorem states that:

1. if the primal has an optimal solution, then so does the dual, and pLP = dLP;

2. if the primal is unbounded, pLP = ∞, then the dual is infeasible;

3. if the primal is infeasible, then the dual is either infeasible or unbounded.

theorem 2 (complementary slackness): Let x be feasible for the primal LP and y be
feasible for the dual. Then we have that x and y are optimal solution of their respective LPs if and
only if complementary slackness holds:
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1. yi = 0, or bi −
n

∑
j=1

aijyi = 0 ∀i = 1, 2, . . . , m, and

2. xj = 0, or
m

∑
i=1

aijxj − cj = 0 ∀j = 1, 2, . . . , n,

where aij is the element in the i-th row and j-th column of the matrix A.

2.3.2 Simplex method

The idea of the simplex method is to move a basic feasible solution to an adjacent vertex to
improve the objective value [41]. If the admissible set is a convex polytope, at least one of the
vertices must be an optimal solution, given a linear objective function. A graphical representation
of the simplex method is shown in Figure 4 to demonstrate the operations of the simplex method.

objective function

initial
basic feasible solution

optimal solution

iteration 1

iteration 2

convex
polytope
vertices

Figure 4: Graphical representation of the simplex method.

Let the linear program be in the standard form, e.g. min{cx : Ax ≤ b, x ∈ Rn
+}. Denote the

set of indices for the basic variables as B and the set of indices for non-basic variables as N .
Add slack variables to each inequality to convert the inequality to an equality, e.g. replace (2.6)
with (2.7)

a1x1 + a2x2 + · · ·+ anxn ≤ b1 (2.6)

a1x1 + a2x2 + · · ·+ anxn + s = b1

s ≥ 0
(2.7)

The linear program is now in the form

min{cTx : Ax = b, x ∈ Rn
+}. (2.8)

Since the simplex method moves from one basic feasible solution to another, it requires increasing
a non-basic variable. We need to track how such a change affects the basic variables. To understand
this effect, rewrite Ax = b in basic and non-basic components, e.g.

Ax = ABxB + AN xN = b

⇔xB = A−1
B b− A−1

B AN xN
(2.9)
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Rewrite (2.9) as components of the non-basic variables,

xB = A−1
B b− ∑

j∈N
A−1
B Ajxj. (2.10)

To see the effect of a non-basic variable, we derive xB with respect to each non-basic variable,
∂xB
∂xj

= −A−1
B Aj, ∀j ∈ N , (2.11)

it is clear that an increase of non-basic variable xj will decrease the basic variables xB by the
vector A−1

B Aj. To improve the objective value, the effect on the objective function needs to be
determined, let the objective function from (2.8) be

z = cTx = cT
BxB + cT

N xN . (2.12)

Rewrite (2.12) as a function of non-basic variables xN ,

z(xN ) = cT
B(A−1

B b− ∑
j∈N

A−1
B Ajxj) + cT

N xN

⇔ z(xN ) = cT
BA−1
B b− ∑

j∈N
(cj − cT

BA−1
B Aj)xj.

(2.13)

To determine the rate at which the objective function will change for a given non-basic variable xj,
we derive the objective function z with respect to each non-basic variable xj,

rj =
∂z
∂xj

= cj − cT
BA−1
B Aj, ∀j ∈ N , (2.14)

this is known as the reduced cost rj. Since we are minimising, one of the non-basic variables with
a negative reduced cost is increased, this variable enters the basis. When all the reduced cost
associated with non-basic variables are greater or equal to zero, the current basic feasible solution
is optimal since the objective value can no longer improve. The value of the chosen non-basic
variable is increased as long as all basic variables stay non-negative. From equation (2.11) it is
obvious that an increase in xj, will decrease xB at a rate of

dj
B = A−1

B Aj. (2.15)

When dj
i < 0, the basic variable xi will remain non-negative. From equation (2.10) we see if dj

i is
positive, xi is only non-negative when

xj ≤
(A−1
B b)i

dj
i

, (2.16)

this suggests that the value of the non-basic variable entering the basis should be

xj = min
{

xi

dj
i

: i ∈ B, dj
i > 0

}
. (2.17)

Pseudocode for the simplex method is given in algorithm 1, where the input is a standard linear
program, and the output may be an optimal solution, an infeasible flag or an unbounded flag.
When at least one variable in the basic feasible solution is zero, the solution is degenerate and
the next iteration may not improve the objective value. When a basic feasible solution is not
degenerate, the objective value strictly improves the next iteration. When the same basic feasible
solution occurs more than once, the simplex method will cycle, and fail to terminate. Multiple
methods exist to prevent cycling, such as Bland’s rule [42] and the criss-cross method [43, 44].
Other methods avoid the appearance of degenerate solutions by adding small positive constant
values to the right hand side, so basic feasible solutions are never zero [45].
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Algorithm 1 Pseudocode for the Simplex method [41].
Input: A standard linear program.
Output: Maybe an optimal solution.

1: Initialise with a basic feasible solution x0 with AB the associated basis.
2: if no basic feasible solution exists then
3: return infeasible
4: end if
5: while basic feasible solution is not optimal do
6: for all j ∈ N do
7: rj ← cj − cT

BA−1
B Aj

8: end for
9: if rj ≥ 0, ∀j ∈ N then

10: return current basic feasible solution (optimal).
11: else
12: for all j ∈ N do
13: if rj < 0 then
14: dj

B ← A−1
B Aj

15: end if
16: end for
17: end if
18: if dj

B ≤ 0, ∀rj < 0, j ∈ N then
19: return unbounded
20: else
21: for all i ∈ B do
22: xi ← (A−1

B b)i
23: end for
24: xj ← min{ xi

dj
i

: dj
i > 0}

25: let xj enter the basis and the corresponding xi exit the basis.
26: end if
27: end while
28: return x

2.3.3 Integer linear program

Integer linear programs are linear programs for which the decision variables are restricted to
integer values [46]. A general integer linear program is in the form

max{cTx : Ax ≤ b, x ∈ Zn
+}. (2.18)

The search space for an ILP is different from the search space of an LP, and we cannot enjoy
the luxury of only using the simplex method. A graphical representation of the difference in
search spaces are illustrated with Figure 5. Figure 5a is the relaxed version of Figure 5b, e.g. the
integer restrictions are dropped. The relaxed ILP contains the solutions of the original problem
(Figure 5b) but all the solutions in the relaxed ILP are not included in the ILP. It is clear that not
all the vertices of the convex polytope in Figure 5a are solutions in Figure 5b.

The branch and cut algorithm can be used to solve ILPs, which involves executing the branch
and bound (B&B) algorithm and generating cutting planes to tighten the relaxed ILP. Figure 6 is a
graphical representation of how cutting planes can help obtain a search space with all components
of the extreme points integral. For any linear objective function, the integer linear program shown
in Figure 5b can be solved to optimality with the simplex method, when cutting planes in Figure 6

are added.



2.3 linear programming 13

(a) Linear Programming example.

1 2 3 4 5 6 7 8
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search space
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x2

(b) Integer Linear Programming example.
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Figure 5: Difference between Linear Programming and Integer Linear Programming search space.
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Figure 6: Search space of LP relaxation of Figure 5b with cuts to ensure integral extreme points.
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2.3.4 Cutting planes

Cutting planes were introduced by Gomory [47] as a method to solve integer- and mixed-
integer linear programs. Gomory cuts are very effective when used in combination with the B&B
algorithm. Initially, the LP relaxation of the problem is used in conjunction with the simplex
method to produce a basic feasible solution to the relaxed problem. When all the components of
the basic feasible solution are not integral, the method finds a hyperplane with the basic feasible
solution on one side and all the feasible integer solutions on the other side. This is added to
a modified linear program, and the process is repeated until an integer solution is found. The
simplex method produces a set of equations in the form,

xi + ∑
j∈N

aijxj = bi, ∀i ∈ B, (2.19)

where B, N are the sets containing the basic variables and non-basic variables respectively. Lets
rewrite the equation of any basic variable, xi from the set of equations (2.19), such that the
fractional and integral parts are separate

xi + ∑
j∈N
baijcxj − bbic = (bi − bbic)− ∑

j∈N
(aij − baijc)xj

⇔xi + ∑
j∈N
baijcxj − bbic = b′i − ∑

j∈N
a′ijxj,

(2.20)

where

0 ≤ b′i < 1, (2.21)

and

0 ≤ a′ij < 1, ∀j ∈ N . (2.22)

To ensure the current non-integral basic feasible solution is excluded, but all the integer feasible
solutions remain in the search space, the right-hand side of (2.20) should be less or equal to zero,

b′i − ∑
j∈N

a′ijxj ≤ 0

⇒si − ∑
j∈N

a′ijxj = −b′i , ∀si ∈ Z+,
(2.23)

where si is the associated slack variable. Constraint (2.23) can be added to the modified linear
program, this process can be repeated until an integer-feasible solution is found.

2.3.5 Branch and bound

The B&B algorithm systematically enumerates through the feasible search space to obtain the
optimal solution(s). An initial LP relation solution forms the root node of a tree structure. The
algorithm explores branches of the tree structure and updates the best feasible solution accordingly.
Nodes that lead to a lower quality solution than the current best feasible solution are discarded.

The generic B&B algorithm is shown in Algorithm 2, where a minimisation problem is assumed.
The input to the algorithm is an ILP problem. When there exists a heuristic solution as the input,
the current best value B will get the objective value of the heuristic solution, and the current
best solution s becomes the heuristic solution. Let Q be the queue that holds partial solutions to
the problem. The function p(L) generates partial solutions and are problem-specific; if no such
function is defined, basic feasible solutions from the simplex method can be used. The algorithm
keeps executing until the queue Q is empty. At each iteration, while the queue is not empty, an
element in the queue, which is a node in the tree structure, should be removed. If the solution that
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corresponds to the node n is a feasible solution to the ILP problem and the solution is of better
quality, the current best bound B and best solution s are replaced. When the selected node does
not result in a better feasible solution, branching is performed and the nodes with the potential
to improve the solution quality are added to the queue. When s is unassigned; the algorithm
terminates, no solution was found, otherwise the optimal solution is s, with objective value B.

Algorithm 2 Pseudocode for the B&B algorithm [48].
Input: A feasible heuristic solution xh, Mixed Integer Linear Programming (MILP) problem L.
Output: An Optimal solution or no solution.

1: s← no solution
2: if heuristic solution xh exists then
3: B← f (xh)
4: s← xh
5: else
6: B← ∞
7: end if
8: Q← p(L)
9: while Q 6= ∅ do

10: Q← Q− {n}, n ∈ Q
11: if xn is a feasible solution to ILP and f (xn) < B then
12: B← f (xn)
13: s← xn
14: else
15: N ← branch(n)
16: Q← Q

⋃
e, ∀ bound(e) ≤ B, e ∈ N

17: end if
18: end while
19: return s

2.3.6 Branch and cut

Most modern MILP solvers use B&B algorithms but are still heavily dependent on problem-
specific heuristics to improve computation times. The cutting-plane method on its own can be
inefficient for large MILPs since recursively generating cuts results in extremely large LPs, which
causes numerical difficulties for a LP solver and often converges slowly.

The B&B algorithm with cut generation, called branch and cut, may efficiently solve large MILPs.
Algorithm 3 shows the generic branch and cut algorithm. Initially, the current solution is set
to null and the corresponding objective value to ∞. A minimisation problem is assumed. The
initial problem is added to the list of active LP problems L. At this stage, each LP problem is
considered in L. As long as there are active problems, a problem p is selected and the relaxed
version of the problem is solved. The function relax() returns a problem with integer and binary
constraints removed from decision variables. The solve() function in line 9 can invoke any
arbitrary algorithm that solve LP problems, but the simplex method is usually used. Whenever
the LP problem p does not have a feasible solution, another problem is selected from the list of
current problems. When the relaxed problem has a feasible solution, x is updated to the current
relaxed solution, and v to the current relaxed objective value. If the current relaxed solution is
greater than the current best integral feasible solution, there is no need to explore the solution
further and a new problem is selected from the list of current problems. When the current relaxed
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solution x is integral, current best integral solution x∗ and the corresponding objective value v∗

is updated, else search for cuts that are violated by x∗ and result in an integral solution. The
function add_cut(pr,c) results in a new problem that adds the cut c to the relaxed problem pr.
The algorithm adds these new problems pc ∈ C to the list of current problems L. From here, the
usual branching of the branch and bound algorithm applies. The function branch(), partitions
the problem into new problems with restricted feasible regions. The algorithm adds partitioned
problems to the list of ongoing problems.

Algorithm 3 Pseudocode for the branch and cut algorithm [49].
Input: The initial ILP problem p0.
Output: Maybe an optimal solution x∗ and objective value v∗.

1: Add initial problem to the list of active problems L
2: x∗ ← null
3: v∗ ← ∞
4: L ← L⋃{p0}
5: while L 6= ∅ do
6: L ← L− {p}, n ∈ Q
7: pr ← relax(p)
8: repeat
9: solve(pr).

10: if solution(pr) 6= feasible then
11: break repeat
12: else
13: x← solution(pr)

14: v← objective(pr)

15: end if
16: if v ≥ v∗ then
17: break repeat
18: end if
19: if x ∈ Zn then
20: x∗ ← x
21: v∗ ← v
22: break repeat
23: end if
24: C ← generate_cuts(x∗)
25: if C 6= ∅ then
26: for all c ∈ C do
27: pc ← add_cut(pr, c)
28: L ← L⋃{pc}
29: end for
30: continue
31: end if
32: B ← branch(pr)

33: for all b ∈ B do
34: L ← L⋃{b}
35: end for
36: until C = ∅
37: end while
38: return (x∗, v∗)
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To limit the time a MILP solver spend on solving a problem is to set a optimality gap toler-
ance [50]. The optimality gap is the difference measure between the current best upper and lower
bounds. There are two types of differences, the absolute gap given by,

(absolute gap) = (upper bound)− (lower bound) (2.24)

and the relative gap given by,

(relative gap) =
(upper bound)− (lower bound)

(upper bound) + ε
(2.25)

where ε > 0 and a minimisation problem is assumed.

2.3.7 Piecewise linear functions

Not all problems are explicitly linear, but they can still be formulated as a MILP model by
approximating separable non-linear functions with piecewise linear functions [51]. Define a
function f (e) that approximates the non-linear function g(x) ∈ [a, b] as

f (e) =

g(a) + e−a
b−a (g(b)− g(a)), if e ∈ [a, b] and a < b

f (a), if e = a = b
(2.26)

which is the linear interpolation between the coordinates (a, g(a)) and (b, g(b)). The following
constraints can be added to the MILP model to approximate g(x) ∈ [a, b]

x = λa + µb (2.27)

z = λ f (a) + µ f (b) (2.28)

λ + µ = 1, λ, µ ≥ 0. (2.29)

To get finer granularity of the function, we can divide the domain into disjoint intervals [ai, bi].
The MILP model should only choose one interval to work with. The binary variables δi for all i ∈ I
can be added, where I is an index set for each disjoint interval of f (x). To ensure only one interval
is selected,

∑
i∈I

δi = 1, (2.30)

is added with the modified constraints as

x = λiai + µibi, ∀i ∈ I, (2.31)

z = λi fi(ai) + µi fi(bi), ∀i ∈ I, (2.32)

λi + µi = δi, ∀i ∈ I, (2.33)

λi, µi ≥ 0, δi ∈ {0, 1}, ∀i ∈ I. (2.34)

2.3.8 Big M

Some of the models in this thesis have multiple Big M constraints, which suffice a brief overview
of the method. The Big M method refers to MILPs formulations where violations of a constraint
are associated with a large positive constant M. The Big M ensures equality of variables, and only
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when the associated binary variable takes the value one, else it leaves the variables constrained
between −M and M. Consider the following example where ψ is the associated binary decision
variable, and x, y are decision variables in R+,

x + y ≤ Mψ

x + y ≥ −Mψ,
(2.35)

when ψ = 0, then x = y, otherwise,

−M ≤ x + y ≤ M. (2.36)

Known problems with the Big M problem in practice is numerical instability when M is too large
or if M is too small, resulting in a constraint to become infeasible and making the entire model
infeasible. Caution should be taken when choosing the Big M for a given dataset.

2.4 graph theory

A transportation network can be modelled as a graph, this allows the use of graph algorithms
such as single-source shortest path algorithms [52]. In this thesis some of the problems addressed
are modelled as graphs; this suffices as an introduction to graph theory.

A graph includes points called vertices or nodes and the lines connecting them are called edges.
A weight is usually associated with each edge and for the shortest path problem it represents the
length of an edge. Figure 7a shows an example of a graph with 5 vertices and 6 edges, every edge
in the graph connects two vertices for example, e6 connects v2 and v3.

(a) Graph with 5 vertices and 6 edges.

v1

v2 v3

v4

v5
e1

e2

e3

e4

e5

e6

(b) Digraph with 5 vertices and 7 arcs.

v1

v2

v3

v4

v5

a3

a5

a2

a7

a1 a6

a4

Figure 7: Graph and Digraph.

definition 3: A graph G is composed of two finite sets, a set of vertices V , and a set of
connecting lines E called edges, such that each edge connects two vertices. A graph is written
as G = (V , E).

Digraphs (Directed graphs)

definition 4: A digraph G = (V ,A) is a graph where each arc a = (v, w) ∈ A has a direction
from vertex v to w with v ∈ V and w ∈ V . Edges are called arcs when using digraphs.

Figure 7b shows an example of a digraph with 5 vertices and 7 arcs, every arc in the graph
connects two vertices in a directed fashion for example, a7 connects v5 and v1.
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Tree

definition 5: A tree is an undirected graph G = (V , E) where any two vertices are connected
by exactly one path.

Figure 8 shows an example of a tree graph. There exists only one path between any two vertices,
e.g. the path between v1 and v2 is the sequence of edges e4, e2, e3.

v2

v1 v3

v4

v5

e1

e2

e3

e4

Figure 8: Example of a tree graph.

Path graphs

definition 6: The degree of a vertex in a graph is the number of edges that are incident to the
vertex.

definition 7: The path graph Pn is a tree with two nodes of vertex degree one, and the
other n− 2 nodes of vertex degree two.

Figure 9a shows an example of a path graph that corresponds with the path between v1 and v2

of Figure 8. A path graph is a graph that can be drawn so that all of its vertices and edges lie on a
single straight line [53]. Figure 9b is an example where the path graph in Figure 9a is drawn in a
straight line.

(a) Example of a path graph.

v2

v1 v3

v5

e2

e3

e4

(b) Vertices rearranged in a line.

v1 v3 v5 v2e2 e3e4

Figure 9: Path graph (left) rearranged into a horizontal line (right).

Directed path (dipath)

definition 8: A directed path is a finite sequence of edges directed in the same direction which
joins a sequence of vertices, where all vertices and edges are distinct.
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Disjoint graphs

definition 9: Two subgraphs are edge disjoint if they share no edges, and vertex disjointed if
they share no vertices.

2.4.1 Shortest path algorithms

One of the most common shortest path algorithm used is Dijkstra’s Algorithm [25]. Using
abstract data types, such as minimum priority queues, can lead to improved computation time [54–
56]. A minimum priority queue is an abstract data-type that consists of 3 basic operations: get
minimum value from the queue, add to queue with priority, and decrease the priority of an
element in the queue [57]. These operations are added to Dijkstra algorithm in Algorithm 4

with Q, the priority queue.

The input for Algorithm 4 is a finite weighted graph, a source node s and a target node t. The
output is the minimum distance, and the predecessor node of each explored node. Once a node
is considered by the algorithm as in line 11, the minimum distance in the set D is updated. The
variable dv presents the distance to the node v from the source node. The variable pv represent
the predecessor vertex of node v from the source node s.

Algorithm 4 Dijkstra’s algorithm with min-priority queues.
Input: Finite weighted graph G = (V , E), source node s, target node t
Output: D a set of minimum distances, P a set of predecessor nodes

1: ds ← 0
2: Q← ∅
3: for each v ∈ V do
4: if v 6= s then
5: dv ← ∞
6: pv ← ∅
7: end if
8: Add v to Q with priority dv
9: end for

10: while Q is not empty do
11: u← extract minimum from Q
12: if u = t then
13: break
14: end if
15: for each adjacent vertex v ∈ Q of u do
16: a← du + w(e = (u, v))
17: if a < dv then
18: dv ← a
19: pv ← u
20: Decrease priority of v in Q to a
21: end if
22: end for
23: end while
24: D ← D

⋃
dv ∀v ∈ V

25: P← P
⋃

pv ∀v ∈ V

The source node s gets the distance to itself as zero, which line 1 describes. Initially, the queue
of vertices the algorithm needs to explore is empty. The algorithm adds each vertex in V to the
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queue Q. The priority of each vertex in the queue is initially ∞, except the source node s which is
first in the queue. The initialisation of the queue is done in lines 3 - 9.

As long as the queue Q is not empty, the first element with minimum priority is removed and
explored. The priority of the adjacent vertices of the selected element in the priority queue is
updated, and the process repeats until the queue is empty or the algorithm reaches the target
vertex.

2.5 mathematical notation

This section describes the notation used for the models in the thesis. The modelling depends
on set theory for the indices of variables and set filtering functions to exclude unwanted indices.
Summations over a set expand the columns, and ∀ groups some rows with the indices from
the same set, thus still maintaining a matrix form. Consider the set M = {1, 2, . . . , M}, with
variables xm ∈ M, and constants cm ∈ M, the objective function can be written as

z = ∑
m∈M

xmcm

⇔ z = cTx.
(2.37)

An example of a constraint set can also be described as

∑
m∈M\g(p1,p2,...,pK)

xmcm = yt + bt, ∀t ∈ T \ f (p1, p2, . . . , pK), (2.38)

where g, f are set filtering functions that takes arbitrary parameters p1, . . . , pK and returns a subset
of M and T respectively. T = {1, 2, . . . , T} is an index set, and yt are decision variables with
indices in T and bt constants with indices in T . When f and g returns in empty sets, constraint
set (2.38) generate equations

c1x1 + c2x2 + · · ·+ cMxM = y1 + b1

c1x1 + c2x2 + · · ·+ cMxM = y2 + b2

...

c1x1 + c2x2 + · · ·+ cMxM = yN + bN .

(2.39)

Constraint set (2.39) can be written in the form

Au = b, (2.40)

where

u =

[
x
y

]
=



x1
...

xM

y1
...

yN


. (2.41)

Throughout the thesis, slack and surplus variables are not shown in the models and the models
do not need to be in standard LP form.
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2.5.1 Route Planning for a Battery Electric Vehicle (BEV)

For completeness a recent optimisation model proposed by [28] is provided. Many funda-
mental modelling concepts discussed in this chapter was used by [28]. The authors made many
assumptions to model the single BEV route planning problem, such as a single type of BEV with
constant range and fixed travel and energy consumption between nodes. The charging time is
proportionally linear to the desired quantity to recharge for an inverse recharging rate for each
node.

The problem [28] formulated is given by
Maximise

∑
j∈Ns

wjyj (2.42)

Minimise

∑
(i,j)∈A

k(Q− qj −
ei,j

2
)τi,jxi,j (2.43)

subject to

∑
(i,j)∈A

xi,j ≥ yj ∀j ∈ N (2.44)

∑
(i,j)∈A

xi,j ≤ 1 ∀j ∈ N \ {o, d} (2.45)

∑
(i,j)∈A

xi,j − ∑
(j,i)∈A

xi,j =


−1 if j = o,

1 if j = d,

0 otherwise

∀j ∈ N (2.46)

qj ≤ ( ∑
(i,j)∈A

xi,j)Q, ∀j ∈ N (2.47)

tj ≤ ( ∑
(i,j)∈A

xi,j)T, ∀j ∈ N (2.48)

vj ≤ hjyj, ∀j ∈ N (2.49)

lj ≤ tj ≤ uj, ∀j ∈ N (2.50)

(qi − ei,jxi,j) + ri − (1− xi,j)Q ≤ qj ≤ (qi − ei,jxi,j) + ri + (1− xi,j)Q, ∀(i, j) ∈ A (2.51)

ri ≤ Q− qi, ∀i ∈ Nc (2.52)
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ri ≤ Qvi, ∀i ∈ Nc (2.53)

(ti + τi,jxi,j − (1− xi,j)T ≤ tj ≤ (ti + τi,jxi,j) + (1− xi,j)T, ∀i ∈ Ns, (i, j) ∈ A (2.54)

(ti + τi,jxi,j − (1− xi,j)T ≤ tj ≤ (ti + τi,jxi,j) + (1− xi,j)T, ∀i ∈ Nc, (i, j) ∈ A (2.55)

ci = giri, ∀i ∈ Nc (2.56)

tj, cj, qj, rj ≥ 0, tj, cj, qj, rj ∈ R, ∀j ∈ N (2.57)

yj, vj, xi,j ∈ {0, 1}, ∀j ∈ N , (i, j) ∈ A (2.58)

Where Ns is a set of non-charging station nodes and Nc is a set of charging nodes. N is a set of
all nodes, which includes Ns,Nc the origin o and the destination d. The set of arcs between nodes
in N is denoted by A. wj is a weight score for visited node j and sj is the fixed duration of stay at
non-charging node j. For charging nodes, the amount of energy recharged on node j is given by rj,
and the rate of recharging is given by gj. hj is one if node j is a designated battery swap station,
and zero otherwise. ei,j is the energy consumed travelling from node i to node j—the energy level
when arriving at node j is qj. The duration of stay at a charging station j is denoted cj. The arrival
time at node j is tj with upper and lower bounds of uj and lj respectively. yi is a binary decision
variable to determine if node i was visited. vi is a binary decision variable to determine if a vehicle
recharges on node i and xi,j is a binary decision variable that indicated if the vehicle travels on an
arc (i, j) ∈ A.

Expressions (2.5.1) and (2.5.1) represents bi-objective functions the first to maximise the total
sum of none charging stations and the second incorporates a range anxiety cost function. Con-
straints 2.5.1 and 2.5.1 handle the connectivity of nodes visited, whenever a node i is visited
there must be atleast one incident arc (i, j) ∈ A enabled. For a path followed not to be disjoint
the flow conservation constraints (2.5.1) are added. Constraint sets (2.5.1) and (2.5.1) guarantee
that time and energy requirements are satisfied at each node. Constraint set (2.5.1) allows arrival
time-windows to be specified per node. Constraints (2.5.1) and (2.5.1) ensures that the start time
of next node accounts for the start time of the previous node and the duration spent travelling
between the nodes. Constraint set (2.5.1) added to link the energy when travelling from one node
to another; it also accounts for recharging related in constraints (2.5.1) and (2.5.1).

In the next chapter, many of the assumptions made by [28] are addressed; this includes variable
velocity, duration and energy usage on arcs. The linear fashion in which charging time is handled
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is also addressed with the ability for a BEV to include a solar panel where the energy obtained
heavily depends on weather conditions.

2.5.2 Summary

This chapter gave an overview of optimisation algorithms and modelling methods that are
applicable to the thesis. Most of the theory is on MILP since the models described in the thesis
are MILP models. An introduction to graph theory was also provided since the input data is
modelled as graphs.

In the next chapter, the general path-based and flow conservation models are described with
variable durations and energy usages on arcs. Some preliminary results are also shown for these
models.



3
B AT T E RY E L E C T R I C V E H I C L E R O U T E P L A N N I N G A P P R O A C H E S

This chapter introduces multiple Mixed Integer Linear Programming (MILP) models to solve
single-vehicle route planning for Battery Electric Vehicles (BEVs). The scope of this chapter is to
introduce models that can provide an optimised path between two locations for a BEV with a
solar panel, given any arbitrary linear objective function and vehicle parameters. Examples of
objective functions include the shortest distance, the fastest travel time, most energy-efficient route
or the route with the least cost.

Throughout the literature discussed in section 1.1.3, most approaches to this problem made
assumptions that drastically simplifies the problem which may lead to some undesirable re-
sults [10,11,14,15,17,20,21,27,28]. Most of the existing models are time-independent where energy
consumption relates only to vehicle and road characteristics [10, 11, 13–15, 58]. Time-dependent
models may incorporate features such as weather conditions. Figure 10 depicts a crude oversim-
plification of the dynamic nature of the problem, where the speed travelled on a segment depends
on the weather. The vehicle starts on t = 0 at v1 and ends at v2 on different times depending on
the velocity. In the top depiction, the vehicle has the slowest speed, and the bottom depiction has
the fastest speed. The weather conditions are different at different locations and times. In some
cases, it may be beneficial to drive at a greater speed to avoid getting caught under clouds; this is
illustrated at the bottom of Figure 10. As the vehicle speed on a segment decreases, the duration
the vehicle spends on the segment increases. The longer a vehicle spent on a segment, the more
the sun angle changes.

Another assumption made with most existing algorithms is that the energy efficiency for the
vehicle is constant [28]. Throughout the literature aspects of the problem are discretised and
sequential approaches are followed which do not account for the entire search space. Generally, the
models in the literature do not account for acceleration, which is an important aspect, especially
when there are other vehicles on the road. Usually narrowly scoped optimised algorithms do
not allow extensions on constraints or features trivially. At the time of writing, no existing single
vehicle route planning approaches enabled the inclusion of a solar panel for a BEV to recuperate
energy on-the-go [28].

A feature that allows charging on-the-go seems nonsensical, but if the cost to produce solar-
panels decreases, such an implementation may become feasible by slightly extending driving
ranges. Some models in the literature accounted for energy recuperated through regenerative
braking. However, it is not trivial to expand these algorithms to account for solar-energy since
solar-energy heavily depends on the time of day and cloud coverage. The problem becomes
challenging when a holistic approach is taken since many factors need to be taken into account.
Decisions made in the past significantly impact future decisions.

When considering solar energy, it is essential to use weather predictions where the BEV is
supposed to travel at a specified time. Weather forecasts are not always accurate, mainly when
predicting for the distant future. Thus the route planning is divided into, short-term, medium-
term and long-term planning. Short-term planning takes fine granularity (five-minute intervals)
weather data as an input, but only for a short period in the future, e.g. two hours; this gives more
reliable results but fails to account for change over more extended periods. Medium-term planning

25
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Figure 10: Representation of how different velocities can affect energy gained from the sun.

uses one-hour intervals over twenty-four-hours as an input. Long-term planning includes multiple
days, with three-hour intervals.

In Section 3.2, the initial model is a shortest path formulation that does not account for energy
usage, or the parameters of the BEVs. The model is then gradually extended to include all the
required capabilities. Finally the models and objective functions are adapted to be generic for any
vehicle by using linear piecewise approximations for the energy-usage and duration graphs.

3.1 describing a route with Geographic Information System (GIS) data

The problem needs to be broken down into the smallest possible parts to formulate a mathematical
model. For this purpose a route is divided into multiple parts, called segments and each segment
is approximated as a linear line, as shown in Figure 11. Associated with each segment are
properties, such as the slope θ, length d and friction. Weather conditions, such as wind direction,
-speed and cloud coverage which change over time are considered at a later stage.
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Figure 11: Segment between v1 and v2, with slope θ and length d.

The elevation of the route is a three-dimensional surface constrained to the drivable areas [59,60].
Solving for such a representation is not trivial, so the problem needs to be modelled as a graph
and use the distance components along the route, Figure 11 illustrates such an idea. Figure 12a
shows a non-linear function f (x) representing the elevation with the distance component as a
parameter which demonstrate the weights of an infinite path graph, where each arc corresponds
to a slope dθ. Since it is not possible to work with an infinite path graph, the problem needs to be
discretised. A simple way to approximate a continuous path is to use the extreme points of the
elevation data as vertices and estimate the slope between extreme points as segments. An example
of such an approach is shown in Figure 13a, where θ1, . . . , θ5 are the slopes that corresponds with
the segments s1, . . . , s5. The distance component in Figure 13a is not the distance of the segment,
only a component of the segment length. Figure 13b shows a path with the lowest possible
granularity, e.g. a single segment and slope. The granularity can be increased to improve the
overall accuracy of the data Figure 12b shows a linear piecewise function that approximates the
non-linear function more accurately at the expense of more data-points. Given the non-linearity
of actual road-data, the vertex positions and segment lengths need to be chosen with care.

(a) Non-linear function f (x) representing the eleva-
tion with the distance component as a parameter.
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in Figure 13a.
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Figure 12: Difference between non-linear and linear piecewise functions.
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(a) Linear piecewise function that uses the extreme
points of elevation function for the path a BEV can
follow.
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(b) Linearised version of the function f (x) in Fig-
ure 12a, but with coarser granularity than shown
in Figure 13a.
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Figure 13: Side-by-side comparison showing the problem of not using enough vertices to linearise a non-
linear function (Figure 13b).

Let each segment s be an ordered pair of vertices (a, b) and the path P a set of segments; we
present this as a path graph in Euclidean space as,

P = (V ,S), (3.1)

where V is the set that contains all the vertices in the graph, and S the set with all arcs (linear
segments).

corollary 1: Each path graph between vertices a and b must be a directed acyclic path graph,
with no disjointed sub-graphs.

theorem 3: At most, one path graph in Euclidean space can contain a single linear segment,
which starts at a and ends at b with the segment weight as the distance between a and b.

Proof. Any line between vertices a and b always results in the same Euclidean distance,

d(a, b) =

√
n

∑
i=1

(ai − bi)2, (3.2)

with a = (a1, . . . , an) and b = (b1, . . . , bn) in Euclidean n-space. Thus, any path containing
only a and b are the same paths and indicates that there cannot be more than one arc directly
connecting a and b. When considering different routes with the same starting node and destination
node, a collection of directed path graphs can be used.

Theorem 3 can be generalised to any directed path graph in Euclidean n-space.

theorem 4: Given a graph G = (V ,A) with vertices in Euclidean n-space, each arc a ∈ A
containing the same source node s and target node t, such that a = (s, t), is the same arc in
Euclidean n-space, where the weight of the arc is the distance between s and t. For any two
directed path graphs, Pi = (Vi,Ai) and Pj = (Vj,Aj) that are sub-graphs of G and between s
and t, the following properties apply:

2|Ai
⋃
Aj| = |Aj|+ |Ai|, if Pi = Pj, otherwise, (3.3)

|Ai
⋃
Aj| < |Aj|+ |Ai|, if |Ai

⋂
Aj| > 0, (3.4)

|Ai
⋃
Aj| = |Aj|+ |Ai|, if |Ai

⋂
Aj| = 0. (3.5)

Proof. Given that arcs are distinct for an ordered vertex pair for directed path graphs Pi and Pj

between any vertex s and t; there can exist only one combination of valid directed path graphs for
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any unordered set of arcs of any path graph. Consider the case where one path graph contains all
arcs of another path graph with the same start and target node. To include different arcs in Pj

than that of the path graph Pi causes cycles and not containing any more arcs yields the same
path graph. The union of the same set still produces the original set, and thus, for any arbitrary
path graphs,

2|Ai
⋃
Aj| = |Aj|+ |Ai|.

Consider the case where Pi and Pj have no arcs in common; this is valid when there exists more
than one path graph between s and t. The property of the disjointed sets is that,

|Ai
⋃
Aj| = |Aj|+ |Ai|.

Finally, in the case where some of the arcs are common between Pi and Pj, and they are not
disjointed, nor does one directed path graph contain the other completely. Since we cannot
completely contain a directed path graph in another, we need to exclude at least one arc from Pi.
When an arc is excluded from a directed path graph between s and t, the directed-path is
invalidated and changes to the source or target node were made. Thus, we need to add another
arc that cannot include the same nodes from the removed arc because it will result in the same
directed-path graph. The only way to have a different path graph is to include another vertex
from V , assuming there exists one, and add two arcs to form a valid directed-path graph. The
difference between the sets of arcs will always be larger than zero for this case, from set theory,
we know that for such a case,

|Ai
⋃
Aj| < |Aj|+ |Ai|.

It may seem that Theorem 3 and Theorem 4 are trivial, but it plays an important role in
validating generated path graphs in the preprocessing step. In the next section, the conceptual
models are formulated.

3.2 conceptual models

For this thesis, models need to accommodate multiple objective functions 1 when performing route
planning for a BEV. In this section, basic models are formulated and extended by considering
various objective functions and factors that may influence decisions.

The shortest path formulations have been studied extensively and will serve as a starting point
for the formulations in this thesis. There are two well know MILP formulations for the shortest
path problem, the path-based and the flow conservation model. The path-based formulation
selects a single path ζρ, given a set of finite paths P , where the objective is to
minimise

∑
ρ∈P

ζρdρ, (3.6)

subject to

∑
ρ∈P

ζρ = 1, (3.7)

ζρ ∈ {0, 1}, ∀ρ ∈ P , (3.8)

1 Only one objective function at a time, not multi-objective optimisation.
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where dρ is the total distance of the path, which is the sum of all arc weights included in the
path ρ. With a complete graph G = (V ,A), the number of paths between a starting vertex s and a
target vertex t is given by

|V|−2

∑
m=0

(
|V| − 2

m

)
m! (3.9)

where m is a subset of the remaining |V| − 2 vertices. The obvious disadvantage of this model
is the number of path variables. Another disadvantage is that a separate algorithm is required
to generate all possible paths. The advantage of this model is that the number of paths can be
limited to create a heuristic algorithm.

The alternative formulation is the flow conservation model, which does not need a path variable
for each path. The flow conservation model takes the weight of each arc into account, so the
objective is to
minimise

∑
a∈A

fada, (3.10)

subject to

∑
(i,j)∈σ(i)

fij − ∑
(j,i)∈δ(i)

f ji =


1 i = s

−1 i = d

0 otherwise

, ∀i ∈ V , (3.11)

where σ(i) is a function that returns a set of all the adjacent arcs to i and δ(i) is a function that
returns a set of all the arcs that i is adjacent to and

fa ≥ 0, ∀a ∈ A. (3.12)

The flow conservation model in (3.10) - (3.12) is a compact formulation of shortest-path problem.
The number of flow variables are equal to the number of arcs |A|, in the graph G = (V ,A). The
weight on each arc corresponds to the distance da travelled on the arc, with da ≥ 0. When each
segment’s travel time is known in advance, the distance of each segment can be replaced with a
fixed time ts. Similarly, for the path-based model dρ can be replaced with tρ.

Next, models are extended such that the time is not fixed and depends on the velocity travelled
on each segment.

3.2.1 Path formulation with linearised velocities and durations

The velocity the BEV travels on segment s is a decision variable vs. Since the relationship between
travel time and velocity is not linear, the duration that a vehicle will travel for a distance ds with
velocity vs needs to be linearised. A new variable ts is introduced which is the start time on
segment s and depends on all the previous start times and durations for path ρ. Let S(ρ) be the
set of all segments associated with path ρ. For the variable time formulation, the objective is to
minimise

∑
ρ∈P

(t|S(ρ)|−1 + τ|S(ρ)|−1)ζρ, (3.13)

where τ|S(ρ)|−1 is the duration on the last segment of path ρ, t|S(ρ)|−1 is the start time on the last
segment of ρ and ζρ is the binary decision variable to determine whether a path is selected or not.
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The objective function (3.13) is not linear and needs to be linearised. For this purpose introduce
continuous variables

zρ = ζρ(τ|S(ρ)|−1 + t|S(ρ)|−1), ∀ρ ∈ P , (3.14)

zρ can be used in the linearisation constraints. To ensure zρ is zero when ζρ is zero, Big M
constraints are added as

zρ ≤ Mζρ, ∀ρ ∈ P . (3.15)

When ζρ is one,

zρ = t|S(ρ)|−1 + τ|S(ρ)|−1, ∀ρ ∈ P . (3.16)

Constraint set (3.16) is split into

zρ ≤ t|S(ρ)|−1 + τ|S(ρ)|−1, ∀ρ ∈ P (3.17)

and

zρ ≥ t|S(ρ)|−1 + τ|S(ρ)|−1 ∀ρ ∈ P . (3.18)

To ensure feasibility when ζρ is not selected, constraint set (3.18) is modified to a Big M constraint,
such that

zρ ≥ t|S(ρ)|−1 + τ|S(ρ)|−1 − (1− ζρ)M ∀ρ ∈ P . (3.19)

In the objective function zρ is used such that the objective is to
minimise

∑
ρ∈P

zρ (3.20)

subject to

τs−1 + ts−1 = ts, ∀s ∈ S(ρ)\{0}, ρ ∈ P , (3.21)

which warrants that each start time depends on all the previous start times and durations. At
most one path should be selected, thus

∑
ρ∈P

ζρ = 1. (3.22)

τs depends on vs, which should also be linearised. By adding the linearisation constraints,

vs = ∑
x∈X

vxsαxs, ∀s ∈ S(ρ), ∀ρ ∈ P , (3.23)

τs = ∑
x∈X

τxsαxs, ∀s ∈ S(ρ), ∀ρ ∈ P , (3.24)

where vxs and τxs are breakpoints for all x ∈ X . αxs is a decision variable used to form a convex
combination of related breakpoints that satisfies,

∑
x∈X

αxs = 1, ∀s ∈ S(ρ), ∀ρ ∈ P , (3.25)

The decision variable αxs is allowed to take a value greater than zero only when the binary
decision variable hxs associated with αxs or the neighbouring h(x−1)s is non-zero; this allows a
convex combination of any two adjacent breakpoints as given by,

αxs ≤ h(x−1)s + hxs, ∀x ∈ X \ {0}, ∀s ∈ S(ρ), ∀ρ ∈ P , (3.26)
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where X = {0, . . . , X}, with 0 the first breakpoint index and X the last breakpoint index. To
ensure that there are only two values of αxs which can be greater than zero for each segment s ∈ S ,

∑
x∈X\{X}

hxs = 1, ∀s ∈ S(ρ), ∀ρ ∈ P , (3.27)

where the domain of the decision variables are

0 ≤ αxs ≤ 1, ∀x ∈ X , ∀s ∈ S(ρ), ∀ρ ∈ P , (3.28)

ζp ∈ {0, 1}, ∀ρ ∈ P , (3.29)

hxs ∈ {0, 1}, ∀x ∈ X , ∀s ∈ S(ρ), ∀ρ ∈ P , (3.30)

ts, vs, τs ≥ 0, ∀s ∈ S(ρ), ∀ρ ∈ P , (3.31)

zp ≥ 0, ∀ρ ∈ P . (3.32)

3.2.2 Flow conservation with linearised velocities and durations

The corresponding flow conservation model is to
minimise

td (3.33)

subject to

∑
(i,j)∈σ(i)

fij − ∑
(j,i)∈δ(i)

f ji =


1 i = s

−1 i = d

0 otherwise

, ∀i ∈ V , (3.34)

where σ(i) is a function that returns a set of all the arcs adjacent to i, and δ(i) is a function that
returns a set of all the arcs that i is adjacent to. The start time variables need to be connected with
the flow variables using

tv = min
l=σ(v)

(
tl + τlv + M(1− flv)

)
, ∀v ∈ V , (3.35)

where tv is the start time for node v, τlv is the duration on arc (l, v) and the function γ(v) returns
all the vertices that v is adjacent to, and M is some large constant real value. Equation (3.35) can
be written as linear constraints,

tv ≤ tl + τlv + M(1− flv), ∀l ∈ γ(v), v ∈ V, v 6= l, (3.36)

tv ≥ tl + τlv −M(1− flv), ∀l ∈ γ(v), v ∈ V, v 6= l. (3.37)

The linearisation constraints for the velocity and duration are

va = ∑
x∈X

vxaαxa, ∀a ∈ A, (3.38)

τa = ∑
x∈X

τxaαxa, ∀a ∈ A, (3.39)
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where vxa and τxa are breakpoints sampled from a multiplicative inverse function that involves the
velocity and duration the BEV travels on an arc a. The variables va and τa are linear combinations
of breakpoints vxa and τxa respectively and form convex combinations that satisfies,

∑
x∈X

αxa = 1, ∀a ∈ A, (3.40)

only two adjacent values in the linear combinations can be greater than zero and this is realised
with

αxa ≤ h(x−1)a + hxa, ∀x ∈ X \ {0}, ∀a ∈ A, (3.41)

where X = {0, . . . , X}, with 0 the first breakpoint index and X the last breakpoint index. To
ensure only one breakpoint index variable can be selected,

∑
x∈X\{X}

hxa = 1, ∀a ∈ A, (3.42)

which allows for two adjacent αxa values to be greater than zero. The domain of the decision
variables are

0 ≤ αxa ≤ 1, ∀x ∈ X , ∀a ∈ A, (3.43)

hxa ∈ {0, 1}, ∀x ∈ X , ∀a ∈ A, (3.44)

ta, va, τa ≥ 0, ∀a ∈ A. (3.45)

The linearisation constraints of the flow conservation model are similar to the piecewise linearisa-
tion method of the path-based model.

With both models, (3.20) - (3.32) and (3.33) - (3.45), there are no explicit restrictions on the
velocity, and consequently the duration on each segment. The obvious solution is to use the
maximum velocity that corresponds to x ∈ X , which reduces both problems to the shortest path
problem. These models serve as a basis for this thesis and can be extended to allow the velocity
variable on each segment to depend on a variable that represents energy usage.

3.2.3 Initial model verification

The outputs of the models can be verified with a small example, Figure 14 shows generated
results from the flow conservation model and the path-based model for which node 711 was
selected as the starting node and node 700 as the ending node. A single output graph shows
the results of both models since they are the same. Another easy verification of the models up
until now is a simple shortest path algorithm since the velocities should be chosen at maximum,
reducing the problem to a shortest path problem. For the linearisation of velocities and durations,
eleven evenly spaced breakpoints were chosen from 0 m s−1 to 33.33 m s−1. As expected, the
velocities were maximum for all the selected arcs since there are no other restrictions on the
velocities. The durations corresponded to the simulated values since a breakpoint was selected.

The flow conservation model in Section 3.2.2 and path-based model in Section 3.2.1 do not
include energy constraints that take the characteristics of the vehicle into account. The only
simulation aspect taken into account is the duration a vehicle travels for a specified velocity. In
the next section simulations of a BEV with velocity v on an arc or segment accounting for the road
slope, wind direction and wind speed are used for the extended optimisation models.



34 battery electric vehicle route planning approaches
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Figure 14: Input and output graphs of the flow conservation and path-based model.

3.3 initial practical models

The energy usage on each segment of the road is of extreme importance and requires the modelling
of an electric vehicle. Before energy variables can be linearised, the relationship between the
velocity of a vehicle and the energy required to maintain the velocity v for a distance d needs to
be determined.

3.3.1 Modelling an electric vehicle

Aerodynamic drag, tyre rolling resistance and gravity are the main forces that directly oppose
the movement of a vehicle. Figure 15 shows a simple free body diagram for a vehicle on a segment
with length x and slope θ.

FM

FR
mg

v

θ x

h

vwind

Figure 15: Simple free body diagram.

The force supplied by the electric motor is FM, when applied over the distance x, the work done
by the electric motor is

WM = FMx. (3.46)

For a constant speed v, equation (3.46) can be written as

WM = FMvt, (3.47)

where

v =
x
t

. (3.48)
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The force FR includes the rolling resistance and wind resistance,

FR = Fd + Fr, (3.49)

the drag force of the vehicle is given by,

Fd =
1
2

ρCd A(v− vwind)
2, (3.50)

where ρ is the mass density of air, v is the constant velocity of the vehicle on the slope, vwind is the
wind velocity relative to the ground, Cd is the drag coefficient and A is the reference area [61].
Define the rolling resistance coefficient as the magnitude of force needed to push a wheeled
vehicle forward.

Fr = Crr N = Crrmgcos(θ) (3.51)

The effort required to overcome and the resistance to motion is given by

WR = FRvt. (3.52)

Given that the vehicle is on a slope, the potential energy at the end of the slope is

Ug = mgh = mgx sin θ, (3.53)

which is included in the total energy required by the electric motor. The total energy required by
the electric motor with efficiency ηM is then given by

EM =
1

ηM

[
mgx sin θ + xFR

]
. (3.54)

The efficiency ηM needs to be determined empirically. The total work done by the motor on a
segment with distance x can be written as

WM =
x

ηM(v)

[
mg sin θ +

1
2

ρCd A(v− vwind)
2 + Crrmgcos(θ)

]
, (3.55)

assuming the vehicle is not accelerating. These equations do not take acceleration or deceleration
between segments into account, but WM can be used in the optimisation model to approximate
the energy capacity of the battery at the beginning of each segment. Let the total work done on
each segment depend on the constant velocity travelled on the segment, es(v). For the path-based
model, the total work done on segment s is

es = WM(s, v) = ∑
x∈X

exsaxs, ∀s ∈ S(ρ), ρ ∈ P . (3.56)

To determine the battery state of the vehicle after each segment, use

Es = E(s−1) + es, ∀s ∈ S(ρ)/{0}, ρ ∈ P , (3.57)

which captures the energy in the battery for the previous segment and the work done on the
current segment. For the initial segment with full battery capacity εH,

Es = εH + es, s = S(ρ)(0), ∀, ρ ∈ P . (3.58)

The total energy in the battery at each segment is capped to battery specifications,

εL ≤ Es ≤ εH, s ∈ S(ρ), ρ ∈ P , (3.59)

the total work done on a segment is limited to the maximum energy capacity of the battery,

−εH ≤ es ≤ εH, s ∈ S(ρ), ρ ∈ P . (3.60)

For the flow conservation model, similar constraints are added,

ea = WM(a, v) = ∑
x∈X

exaαxa, ∀a ∈ A. (3.61)

To linearise the work done on each arc,

Ek ≤ Eb + ebk + M(1− fbk), ∀b ∈ γ(k), ∀k ∈ V , b 6= k, (3.62)
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Ek ≥ Eb + ebk −M(1− fbk), ∀b ∈ γ(k), ∀k ∈ V , b 6= k, (3.63)

to capture the battery energy-state after each vertex was explored. The total energy in the battery
at each vertex is capped to battery specifications,

εL ≤ Ev ≤ εH, v ∈ V . (3.64)

The total work done on an arc should also be limited to the maximum energy capacity of the
battery,

−εH ≤ ea ≤ εH, a ∈ A. (3.65)

Both models account for energy usage but fail to account for variable wind speeds on a segment.
Wind speed depends on the start time of each segment when this is taken into account, the model
can easily be adapted to account for other weather conditions.

3.3.2 Solar irradiance

Although the thesis’s focus is not numerical weather prediction (NWP), it still suffices to give
some background on the topic. Terrain roughness can cause variability in the incoming solar
radiation field. Figure 16, introduced by [62] clearly illustrates the major topographic processes
that affects solar radiation in rugged regions for clear-sky conditions. Point B shows the solar
flux is intercepted by a higher elevation (the mountain to the right), which causes a shadow.
Point B is still affected by diffuse irradiance and the neighbouring terrain-reflected irradiance.
Figure 17 illustrates the origin of diffuse- and circumsolar irradiance as an auxiliary to Figure 16.

θA

shadow

shadow(1) Direct irradiance
(2) Circumsolar irradiance

(3) Diffuse irradiance
(4) Intercepted irradiance

(5) Terrain-reflected irradiance

(3) (3) (3)

(2) (1)

(5)

(4)

(4) (4)

B

A

Figure 16: Major topographic processes that affect solar radiation flux in mountainous regions [62].

Loutzenhiser et al. [63] used empirical data for comparison of multiple solar irradiance simulation
models [64–69]. The Isotropic sky model [70, 71] is the simplest model and performed the worst,
but has the advantage of not relying on empirical data of a region. The Perez formulation [69]
provided the best results but relied on empirical data to quantify the diffuse components.

For the simulation, we use the Hay–Davies model [68] where the total irradiance on the tilted
solar panel is:

IT = (Ib + Id Ai)Rb + Id(1− Ai)
(1 + cos(β)

2

)
+ Iρg

(1− cos(β)

2

)
, (3.66)
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Figure 17: Auxiliary illustration for Figure 16.

where Ai is an anisotropic index, in the case of no beam, the calculated diffuse is isotropic, e.g.
Ai = 0. β is the solar panel tilt angle from the horizon. Rb is the ratio of tilted and horizontal
solar beam irradiance. Ib is the direct-normal component of solar irradiance on the horizontal
surface, and Id is the global diffuse horizontal solar irradiance and I is the global horizontal solar
irradiance. ρg is the hemispherical-hemispherical ground reflectance. The total energy gained
from the solar panel for a segment is

Esolar =
∫ t f

ts

IT(t)Apµp dt, (3.67)

where Ap is the area of the solar panel and µp is the efficiency of the solar panel. Esolar depends
on the starting and ending times of each segment and can be added to the energy graph for a
specified starting time and velocity.

3.3.3 Wind direction and -speed

Wind direction describes the direction from which it originates, with 0° a wind that originates
from the north and blows south, Figure 18 illustrates this concept. By using the dot product
between the vehicle direction and the wind direction, the wind speed component is determined.
The longitude and latitude of the starting and ending nodes of each segment determine the
vehicle’s direction. Every longitude and latitude can be mapped to a Cartesian plane, and the
edge cases can be handled separately by translating them to a more suitable position. The vehicle
direction is expressed as a unit vector,

p =
1√

(xt − xs)2 + (yt − ys)2

[
xt − xs

yt − ys

]
, (3.68)
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where xs, xt are the longitudes and ys, yt are the latitudes of the source and target nodes respec-
tively. Assume the vehicle’s travelling direction is the same as the arc the vehicle should move on,
starting at the source node and ending at the target node.

The next step is to get the wind direction on the same axis as the vehicle direction. Since
the wind direction indicates where it originates from, and the axis of a Cartesian plane is a 90°
counter-clockwise rotation of the wind direction, use the following to align the direction in which
the wind flows with,

w = νwind

[
sin(α)
cos(α)

]
, (3.69)

where α is the wind direction and νwind is the wind speed.
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Figure 18: Illustration of wind direction and vehicle direction.

To determine the wind component in Figure 18, consider the dot product between w and p

p ·w = |p||w|cos(θ). (3.70)

Since p is a unit vector,

|w|cos(θ) = p ·w, (3.71)

The wind component is described with the vector,

k = |w|cos(θ)p = (p ·w)p. (3.72)

For calculating the drag force we can use,

vwind =

−|k|, if k
|k| = −p,

|k|, if k
|k| = p,

(3.73)

in equation (3.50).

3.3.4 Modelling energy graphs in a linear fashion

The energy graph incorporates multiple environmental- and vehicle factors. The weather data
and physics of the vehicle are non-linear which results in a non-linear energy graph for each
segment. In order to include these graphs in the MILP models, the energy graphs need to be
linearised. Assume that the velocity and start times forms a grid for the sake of simplicity,
Figure 19c illustrates this idea.
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Figure 19: Illustrations to represent energy graphs.

There are multiple methods to do this, two specific approaches are followed, visual representa-
tion of the approaches are shown in Figure 19. The triangle method in Figure 19a fits non-linear
functions better than with the block method in Figure 19b, but formulating the problem as triangles
has computation repercussions. The obvious drawback of the block method is the constant energy
value for a whole time frame, where the triangle method linearly approximates the energy difference
between time-frames. As the number of data-points increase, both Figure 19a and Figure 19b
approach the same non-linear values. In cases where there are computation-time and availability
of data trade-off, for more data-points the block method may be a better option than the triangle
method. When there is a lack of comprehensive data, the triangle method may be more beneficial
than the block method.
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Constraint sets (3.74) - (3.79) describes the triangle method of [51] where (vx, ty) are sampling
coordinates for x ∈ X , y ∈ Y , exy is the function evaluated at each breakpoint (vx, ty). βxy ∈ [0, 1]
is a continuous variable (one per breakpoint), used for computing the convex combinations for
the three-dimensional space. βxy should be defined as a Special Ordered Set of Type 3 (SOS3) but
current MILP solvers do not have such functionality. Create binary decision variables κ

(u)
xy , κ

(l)
xy for

the upper and lower triangle in the rectangle. Let v be the velocity of the BEV on a segment in
Figure 19a,

v = ∑
x∈X

∑
y∈Y

βxyvx, (3.74)

and the start time on a segment be,

t = ∑
x∈X

∑
y∈Y

βxyty, (3.75)

with the energy used,

e = ∑
x∈X

∑
y∈Y

βxyexy, (3.76)

where vx, ty and exy are breakpoints associated with x ∈ X and y ∈ Y . The variables v, t and e
are linear combinations of vx, ty and exy, which form convex combinations that satisfies

∑
x∈X\{X}

∑
y∈Y\{Y}

βxy = 1, (3.77)

where X = {0, . . . , X} and Y = {0, . . . , Y}. The auxiliary constraints that force one triangle to be
selected, either an upper or lower triangle of the rectangle, which is identified by the associated
breakpoint, are given by

∑
x∈X\{X}

∑
y∈Y\{Y}

κ
(u)
xy + κ

(l)
xy = 1. (3.78)

The selected triangle is a convex combination of three points, the selected breakpoint and two
adjacent points, and this is modelled with

βxy ≤ κ
(u)
xy + κ

(l)
xy + κ

(u)
x(y−1)+ κ

(l)
(x−1)y + κ

(u)
(x−1)(y−1)+ κ

(l)
(x−1)(y−1) ∀x ∈ X \ {0}, y ∈ Y \ {0}. (3.79)

To describe the block method, Special Ordered Set of Type 2 (SOS2) with bigM constraints are
applied. Figure 19b can be modelled with,

v = ∑
x∈X

vxαx, (3.80)

where v is the velocity on the segment e is the energy used on a segment and is expressed as the
convex combination,

e ≤ ∑
x∈X

αxexy + M(1− κy), ∀y ∈ Y , (3.81)

e ≥ ∑
x∈X

αxexy −M(1− κy), ∀y ∈ Y , (3.82)

where κy is the variable to select a start time t between ty and t(y+1), according to

t ≤ ∑
y∈Y\{Y}

κyt(y+1). (3.83)

t ≥ ∑
y∈Y\{Y}

κyty, (3.84)

The constraints for linear piecewise approximation are still required,

αx ≤ h(x−1) + hx, ∀x ∈ X , (3.85)
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∑
x∈X

αx = 1, (3.86)

∑
x∈X\{X}

hx = 1. (3.87)

To ensure a single start time is selected,

∑
y∈Y\{Y}

κy = 1. (3.88)

In the next section, the path-based and flow conservation models are extended by using the block-
and triangle method.

3.3.5 Extended path-based model

To consider the energy, a multi-dimensional linear piecewise approximation needs to be
formulated using the start time, velocity and energy used on each segment. Describe each point
on the plane as a convex combination with βxys as coefficient,

vs = ∑
x∈X

∑
y∈Y

βxysvxs, ∀s ∈ S(ρ), ρ ∈ P , (3.89)

ts = ∑
x∈X

∑
y∈Y

βxystys, ∀s ∈ S(ρ), ρ ∈ P , (3.90)

es = ∑
x∈X

∑
y∈Y

βxysexys, ∀s ∈ S(ρ), ρ ∈ P(d) (3.91)

such that

∑
x∈X

∑
y∈Y

βxys = 1, ∀s ∈ S(ρ), ρ ∈ P , (3.92)

∑
x∈X\{X}

∑
y∈Y\{Y}

κ
(u)
xys + κ

(l)
xys = 1, ∀s ∈ S(ρ), ρ ∈ P , (3.93)

βxys ≤ κ
(u)
xys + κ

(l)
xys + κ

(u)
x(y−1)s + κ

(l)
(x−1)ys + κ

(u)
(x−1)(y−1)s + κ

(l)
(x−1)(y−1)s

∀x ∈ X \ {0}, y ∈ Y \ {0}, s ∈ S(ρ), ρ ∈ P .
(3.94)

The path-based model can be extended by considering the energy consumed on each segment s,
given velocity vs and the time on which the vehicle starts on the segment ts. The binary decision
variables κys corresponds to all the specified sequential start times on each segment, the start
time ts can be any value between two adjacent start times, which is given by

ts ≤ ∑
y∈Y\{Y}

κyst(y+1)s, ∀s ∈ S(ρ), ρ ∈ P , (3.95)

ts ≥ ∑
y∈Y\{Y}

κystys, ∀s ∈ S(ρ), ρ ∈ P . (3.96)

To allow only a single start time to be selected for each segment,

∑
y∈Y\{Y}

κys = 1, ∀s ∈ S(ρ), ρ ∈ P . (3.97)

The energy used, given the start time and velocity of a segment can be expressed as

esρ = ∑
x∈X

αxses(x, y). (3.98)



42 battery electric vehicle route planning approaches

Relate κys to the energy usage since it indicates a specified start time. Big M constraints are
required to ensure that the energy usage on the selected start time becomes an equality,

esρ ≤ ∑
x∈X

αxses(x, y) + M(1− κys), ∀y ∈ Y , ∀s ∈ S(ρ), ρ ∈ P , (3.99)

esρ ≥ ∑
x∈X

αxses(x, y)−M(1− κys), ∀y ∈ Y , ∀s ∈ S(ρ), ρ ∈ P . (3.100)

M needs to be chosen with care because a too large M value can cause numerical instability. In
the implementation M was chosen as two times the battery capacity since the energy usage on a
segment should not be more than the battery capacity of the vehicle.

3.3.6 Extended flow conservation model

To consider the energy usage, a multi-dimensional linear piecewise approximation using the
start time, velocity and energy used on each arc needs to be formulated.

∑
x∈X

∑
y∈Y

βxya = fa, ∀a ∈ A, (3.101)

allows the convex combinations associated with βxya to be disabled for arc a when there is no flow
over arc an a. Similar convexity constraints are required for the velocity, energy and start time.
The velocity is given as a linear combination of breakpoints associated with x ∈ X ,

va = ∑
x∈X

∑
y∈Y

βxyavxa, ∀a ∈ A, (3.102)

and the energy is a linear combination of breakpoints associated with both x ∈ X and y ∈ Y ,

ea = ∑
x∈X

∑
y∈Y

βxyaexya, ∀a ∈ A. (3.103)

Unlike the path-based model, the start time is not associated with a segment, but rather a vertex.
Since βxya has an arc index x, vertices associated with the start time need to be related to arcs.
The function σ(v) returns the arcs where the vertex v is the source vertex. The start times are then
written as a linear combination,

tv = ∑
x∈X

∑
y∈Y

βxyatyv, ∀a ∈ σ(v), v ∈ V , (3.104)

The triangle selection variables κ
(u)
xya, κ

(l)
xya should be zero if there is no flow over an arc a,

∑
x∈X\{X}

∑
y∈Y\{Y}

κ
(u)
xya + κ

(l)
xya = fa, ∀a ∈ A. (3.105)

To ensure that at most three adjacent breakpoints are selected for the convex combinations, va, ea

and tv,

βxya ≤ κ
(u)
xys + κ

(l)
xya + κ

(u)
x(y−1)a + κ

(l)
(x−1)ya + κ

(u)
(x−1)(y−1)a + κ

(l)
(x−1)(y−1)a∀x ∈ X \{0}, y ∈ Y \{0}, a ∈ A,

(3.106)

βxya, for all x ∈ X , y ∈ Y will be zero when there is no flow over arc a.

Add a binary variable κvy for every start time tyv, where v ∈ V and y ∈ Y . Y is a set containing
all the indices for the start times. Start times are constrained to the provided start times,

tv ≤ ∑
y∈Y\{Y}

κayt(y+1)v −M( fa − 1), ∀a ∈ σ(v), v ∈ V , (3.107)
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tv ≥ ∑
y∈Y\{Y}

κaytyv + M( fa − 1), ∀a ∈ σ(v), v ∈ V , (3.108)

where only a single start time can be chosen if there exist a flow fa,

∑
y∈Y\{Y}

κay = fa, ∀a ∈ σ(v), v ∈ V . (3.109)

The energy usage for an arc depends on the start time. To consider factors such as wind speed
and wind direction, constraints similar to (3.99) and (3.100), are included

ea ≤ ∑
x∈X

αxaexya + M(1− κay), ∀a ∈ A, ∀y ∈ Y , (3.110)

ea ≥ ∑
x∈X

αxaexya −M(1− κay), ∀a ∈ A, ∀y ∈ Y , (3.111)

in the formulation. The value of M is chosen as two times the battery capacity.

3.3.7 Results and initial model comparison

A single arc/segment is used to compare the techniques for modelling energy graphs and
determine a reasonable number of velocity steps. Figure 20a shows the results for the different
techniques described in the previous sections. Table 1 shows the vehicle characteristics chosen to
generate the results. The vehicle characteristics such as drive-train efficiency, solar panel efficiency,
frontal area and drag coefficient are approximations of the North-West University’s Solar car that
competed in the 2018 Sasol Solar Challenge. The battery capacity and solar panel area are typical
for solar powered BEVs that compete in solar races [72].

Table 1: Solar powered vehicle characteristics used in optimisation runs.
Name Symbol Value
Battery capacity εH 18 MJ
Minimum battery energy εL 3.6 MJ
Drive-train efficiency ηM 0.93

Solar panel area Ap 4 m2

Solar panel efficiency µp 0.2
Tyre roll coefficient Crr 0.026

Drag coefficient Cd 0.225

Frontal area A 0.7 m2

The naming conventions for the models are as follows, the prefix FC is for the flow conservation
model and P for the path-based model, this is followed by TRI when the triangle method for the
energy graphs is used and BLK when the block method is used. The detailed table of results is
given in Appendix A.

The velocity steps are varied to observe the effect on the performance of the models. From
Figure 20a, it is evident that the triangle method does not scale as well as the block method. The
runtime grows exponentially as the number of velocity steps increases; this is not the case for
the block method since the binary selection variable κ∗y does not have an index for any element
in X . The flow conservation model seems to scale better than the path-based model, but more
experiments are needed to verify the path-based and flow conservation models’ scalability. A
single arc/segment is not a good test instance for comparing the path-based model and flow
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(a) Runtime scalability of different approaches and ve-
locity steps.
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(b) Energy error of different approaches and velocity
steps.
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(c) Objective value as granularity of velocity increase.
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Figure 20: Effect of increased velocity steps.

conservation model, but this experiment gives a decent indication of how many velocity steps to
choose per segment. Different types of graphs will be considered at a later stage of the thesis.

The optimal objective value should be the same for the path-based model and the flow con-
servation model whenever the same energy graph method and velocity steps are used; this is
apparent in Figure 20c. These values are close to the simulated values, Figure 20b indicates the
energy error on the optimisation solution. As the granularity increases, the absolute energy error
decreases, which shows the model corresponds to the simulated energy used. Figure 20c and
Figure 20b strongly correlate, as the absolute error on the energy graph decreases, the optimal
objective value nears the "true" optimal2.

Figure 21 shows the difference between generating an energy graph with the block method and
with the triangle method. Figure 21a shows the block method, and Figure 21b shows the triangle
method, both with eight evenly spaced velocity points. Twenty-four start times, separated by
one-hour, was used of which the first started at 8 AM. In addition, a latitude of -29.86306279 and

2 There can only exist a single optimal value (multiple solutions can exist), for each given dataset and model. Multiple
optimal values refer to different granular datasets, such as increased velocity steps. The "true" optimal refers to the
optimal solution with infinitesimal granular inputs which are theoretical.
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(a) Energy graph used with the block method.
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(b) Energy graph used with the triangle method.
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Figure 21: Difference between block-based and triangle-based energy graphs. Negative energy shows the
energy the vehicle uses and positive energy is the energy the vehicle gains.

a longitude of 31.01972238 were used. From both figures, the sunrise is clear. For all the solutions,
the initial start time is after 9 AM. The error on the energy used was very close for the block and
triangle method, and there seems to be no benefit for using the triangle method other than less
Big M constraints in the model. Even though the triangle method may not be feasible for large
datasets, the method can validate smaller datasets’ results.

3.4 algorithmic improvements

The path-based model allows the formulation to be used as a heuristic when the number of
paths is limited. With a smaller search space, feasible solutions may be found with relative ease,
although there is no solution quality guarantee with such an approach. When a solution is found
with a reduced search space, it can be used as a warm-start for the original model or the flow
conservation model. The subsets of paths we consider are the shortest paths. Although the
number of paths to generate may not be apparent, starting at the shortest path is a reasonable
assumption.
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3.4.1 k-shortest paths

There are multiple variations of the k-shortest path, a loopless variation and a loopy variation.
With the loopless variation, each path must contain distinct arcs. Multiple other similar algorithms
and variations of the problem were published, including Yen’s algorithm [73] for loopless k-
shortest paths and Eppstein’s algorithm [74] to loopy k-shortest paths. The k-shortest path
algorithm is used as a preprocessor for the path-based model to limit the number of generated
paths. The focus is on the implementation of a loop-less algorithm since the initial assumption
was that all paths are directed path graphs. Dijkstra’s single-source shortest path algorithm and
the Bellman-Ford algorithm [22] can be extended to generate more than one path. Algorithm 5

Algorithm 5 Dijkstra’s algorithm generalised to k-shortest paths.
Input: Finite weighted graph G = (V ,A), source node s, target node t, k number of paths to find.
Output: P a set of paths from s to t.

1: P ← ∅
2: cu ← 0, ∀u ∈ V
3: Ps ← {s} with cost Cs = 0
4: while B is not empty and ct < k do
5: Pu ← extract path with minimum cost from B
6: B ← B − {Pu}
7: cu ← cu + 1
8: if u = t then
9: P ← P ⋃{Pu}

10: end if
11: if cu ≤ k then
12: for each vertex v adjacent to u do
13: if (u, v) 6∈ Pu then
14: Pv ← Pu

⋃
(u, v) with cost Cv + wuv

15: B ← B⋃Pv
16: end if
17: end for
18: end if
19: end while
20: return P

generates the k-shortest directed path graphs using a generalised version of Dijsktra’s algorithm.
Loops can easily be added by excluding line 13 and changing line 14 to concatenate Pu with (u, v).
The algorithm can be viewed as entities racing to the target node each taking another path and the
first k to reach the target node are the winners. Since the path with the minimum cost is considered
at each step, the paths are sorted from the shortest path to the longest path of the k-paths. In
line 4 the algorithm will keep exploring the graph as long as the count on the target node ct is
less than k. The path with the minimum cost is selected on line 5 and removed from the queue
of paths B in line 6. The count of the explored vertex where the path ends is increased in line 7.
When the path ends with the target node t, the path Pt is added to the resulting paths P . At each
step, when k explorations were not done on a vertex, each adjacent vertex is added to distinct
paths in the queue B, this is shown in lines 12-17. Once the algorithm terminates, less or equal to
k shortest paths in P is returned.
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3.4.2 Path-based model as a parallel problem

The advantage of the path-based formulation is the ability to limit the paths to create a
heuristic. Unlike the flow conservation model, the path-based formulation can be divided into |P|
independent problems. Consider the initial path-based formulation in section 3.3.5; the problem
can be divided into two steps. The first step is to solve the initial path-based formulation for each
path independently and drop the path selection constraints. Each problem solved, with a single
path, can either be infeasible, optimal or undetermined. Infeasible paths can be excluded from the
original set of paths. From all the sub-problems solved to optimality3, only the sub-problem with
the best objective value needs to be stored. When the set of undetermined sub-problems is empty,
the best solution is optimal to the original problem. When the undetermined subproblems are not
empty, the sub-problems’ best solution may not be optimal to the original problem. Instead, a
new set of paths is created which include all the paths from the undetermined set and the best
solution from the optimal subproblems, and a smaller MILP problem is solved. The single path
sub-problem is to minimise

t|S|−1 + τ|S|−1, (3.112)

subject to

τs−1 + ts−1 ≤ ts, ∀s ∈ S\{0}, (3.113)

which warrants that each starting time depends on all the previous starting times and durations,
τs depends on vs, which should also be linearised. Add the linearisation constraints for velocities
with

vs = ∑
x∈X

vxsαxs, ∀s ∈ S , (3.114)

where vxs is the breakpoint value for segment s. To linearise durations add,

τs = ∑
x∈X

τxsαxs, ∀s ∈ S , (3.115)

with τxs the breakpoint value for x on segment s. Additional SOS2 constraints are needed to select
a single line segment4, which uses αxs as a convex combination between two breakpoints, these
constraints are usually omitted, but can be expressed as

αxs ≤ h(x−1)s + hxs, ∀x ∈ X , ∀s ∈ S , (3.116)

∑
x∈X

αxs = 1, ∀s ∈ S , (3.117)

∑
x∈X\{X}

hxs = 1, ∀s ∈ S , (3.118)

ts ≤ ∑
y∈Y\{Y}

κyst(y+1)s, ∀s ∈ S , (3.119)

ts ≥ ∑
y∈Y\{Y}

κystys, ∀s ∈ S . (3.120)

3 Sub-problems solved to optimality only indicates a feasible solution to the original problem.
4 Line segments refers to the linearised parts of SOS2 implementations and not the segment of the problem description

which is in S .
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To allow only a single start time to be selected on each segment,

∑
y∈Y\{Y}

κys = 1, ∀s ∈ S . (3.121)

The energy used, given the start time and velocity on a segment can be expressed as

es = ∑
x∈X

αxse(x, y). (3.122)

κys can be related to the energy usage since it indicates a specified start time. Big M constraints
are required to ensure that the energy usage on the selected start time becomes an equality,

es ≤ ∑
x∈X

αxse(x, y) + M(1− κys), ∀y ∈ Y , ∀s ∈ S , (3.123)

es ≥ ∑
x∈X

αxse(x, y)−M(1− κys), ∀y ∈ Y , ∀s ∈ S . (3.124)

The domains of the decision variables are

0 ≤ αxs ≤ 1, ∀x ∈ X , ∀s ∈ S , (3.125)

hxs ∈ {0, 1}, ∀x ∈ X , ∀s ∈ S , (3.126)

κys ∈ {0, 1}, ∀y ∈ Y , ∀s ∈ S , (3.127)

es, ts, vs, τs ≥ 0, ∀s ∈ S . (3.128)

Algorithm 6 Pseudocode for solving independent sub-problems for the path-based model.
Input: P a set of paths from s to t.
Output: A single path p, or infeasible.

1: sp ← solve_subproblem(p), ∀p ∈ P
2: j← no solution
3: if sp is undetermined or feasible with relative gap > 0, ∀p ∈ P then
4: Q ← Q⋃{sp}
5: end if
6: if sp is optimal, ∀p ∈ P then
7: j← p if sp is a better solution than sj
8: end if
9: if j has solution and |Q| = 0 then

10: return j
11: end if
12: if time-limit reached and j is solution then
13: return j
14: else
15: return no solution
16: end if
17: return solve(Q⋃{j})

Algorithm 6 provides an outline of the path-based model as a parallel problem. The time-limit
determines the halting condition of Algorithm 6. The algorithm will stop prematurely only when
all the subproblems are solved to optimality before the time-limit was reached, or there is no
solution. The paths between two vertices can be exponential, given the number of vertices. In
cases where an exponential number of subproblems need to be solved, speed-up can be negatively
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impacted by limited computational resource availability or increased costs. Although the problem
can be solved as independent subproblems does not mean it is practical. For dense graphs, the
number of paths between the source and target node can be significant, leading to a large number
of subproblems. Solving many subproblems in parallel may require expensive hardware with
many processing cores. For example, a dataset with a thousand paths will already be bottlenecked
with consumer hardware. This algorithm does not reduce the search space; it only solves the
subproblems in parallel and is heuristic when a time-limit is set. A more reasonable approach is
to use the path-based heuristic in conjunction with the flow conservation model.

3.5 model improvements

Building upon the previous models, charging stations may be added as well as the energy needed
to accelerate from one speed to another. One approach to accommodate charging stations is to
change the input data. Details on charging stations are given in Section 3.5.1. When considering
acceleration in the models, adjustments to the formulation are needed due to the non-linear nature
of acceleration.

3.5.1 Charging stations

Charging stations can be accommodated in the models described in Section 3.2, by representing
them as artificial vertices within the input graphs. As an example, Figure 22a shows the addition
of vertex v3 to represent a charging station. Paths generated from the input graphs are directed
path graphs and the charging station in Figure 22a will not generate a path containing v3, since
there is no way to define a directed path graph between v1 and v4 that contains distinct vertices
and which contains arcs c23 and c32. A way around this is to replace v2 with two auxiliary
vertices x, y and add an arc between them with a zero weight, Figure 22b illustrates this. One
thing to note is that

w12 + w24 = w1x + wxy + wy5. (3.129)

Energy graphs need to be generated differently for charging station arcs. The energy graph
generated at each charging station depends on the charging duration of a vehicle on that arc.
Therefore a simple reciprocal function is used to represent charging stations,

f (t) =
−k

rt + 1
+ k, (3.130)

where k is the capacity of the battery being charged and r the charging rate. This function can be
swapped for any function specific to the charging station.

3.5.2 Energy used to accelerate between segments

The optimisation models in Section 3.3 do not account for the energy when accelerating or
decelerating between segments/arcs. These additions require extra linearisation variables and
constraints since the relationship between acceleration and speed is not linear. From equation (3.46)
recall that

FM · dx = FM · vdt = ma · vdt = m
dv
dt
· vdt, (3.131)
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(a) Charging station arcs causing a cycle on a vertex.
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(b) Charging station arcs not causing a cycle on a vertex.
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Figure 22: Representing charging stations in a graph.

for an infinitesimal displacement dx and -time interval dt. Apply the product rule, assuming m is
constant,

md(v · v) = m(dv · v + v · dv) = 2m(dv · v) =⇒ m(dv · v) = md(v · v)
2

, (3.132)

thus,

FM · dx = m
dv
dt
· vdt = m(dv · v) = m

2
d(v · v) (3.133)

The work done between time t1 and t2 can be calculated from equation (3.131) as,

Ek =
∫ t2

t1

FM · dx =
∫ t2

t1

m
dv
dt
· vdt. (3.134)

It is evident that the work done depends on the initial and ending speed that relates to t1 and t2.
Use v1 as the speed at t1 and v2 as the speed at t2, then,

Ek =
∫ v2

v1

m
2

d(v · v) = 1
2

m|v2|2 −
1
2

m|v1|2. (3.135)

The difference in kinetic energy between segments s1 and s2 can be used to estimate the energy
used to accelerate/decelerate from v1 to v2.

To incorporate equation (3.135) into the optimisation models, the energy graphs need to be
changed. Previously, each energy graph estimated the energy used/gained on a segment with the
start time and speed on a segment. For the path-based model constraint set (3.89) is changed to,

v2
s = ∑

x∈X
∑
y∈Y

βxysv2
xs, ∀s ∈ S(ρ), ρ ∈ P , (3.136)

for the triangle method and constraint set (3.23),

v2
s = ∑

x∈X
v2

xsaxs, ∀s ∈ S(ρ), ∀ρ ∈ P , (3.137)

for the SOS2. The squared speed is used as a linear variable in the MILP models, since

vs ≥ 0. (3.138)

Now add Ek to the energy used per segment, modifying constraint set (3.56) to,

es = ∑
x∈X

exsaxs +
1
2

mv2
s −

1
2

mv2
(s−1), ∀s ∈ S(ρ)/{0}, ρ ∈ P , (3.139)

es = ∑
x∈X

exsaxs −
1
2

mv2
s , s = 0, s ∈ S(ρ), ρ ∈ P . (3.140)

The same applies for the flow conservation model by replacing constraint set (3.38) with

v2
a = ∑

x∈X
v2

xaαxa, ∀a ∈ A, (3.141)
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and constraint set (3.102) with

v2
a = ∑

x∈X
∑
y∈Y

βxyav2
xa, ∀a ∈ A. (3.142)

Since incident arcs to each vertex are considered in the flow conservation model and Ek cannot
be added to each constraint as with the path-based model, constraint set (3.62) and (3.63) are
extended to accommodate the adjacent vertices as well. Modify the Big M constraints to account
for both adjacent and incident arcs, which can be achieved by,

Eu ≤ Eb + ebk +
1
2

mv2
bu−

1
2

mv2
ug + M(2− fbu− fug), ∀b ∈ γ(u), g ∈ σ(u), ∀u ∈ V , b 6= u, (3.143)

Eu ≥ Eb + ebu +
1
2

mv2
bu−

1
2

mv2
ug−M(2− fbu− fug), ∀b ∈ γ(u), g ∈ σ(u) ∀u ∈ V , b 6= u, (3.144)

when an incident arc and an adjacent arc is active, a single constraint

Eu = Eb + ebu +
1
2

mv2
bu −

1
2

mv2
ug, b ∈ γ(u), g ∈ σ(u), b 6= u (3.145)

is active per vertex u ∈ V .
The drawback to using v2 is the general loss of accuracy. Finer granularity of data can improve

accuracy at the cost of a larger input set, computation time and memory usage.

3.6 summary

The input data was described as graphs; every vertex corresponds to a GIS location and the arc
between vertices an approximation of the physical road segment. The data needed to be discrete
before formulating the problem as a MILP problem and different approaches were provided
as alternatives. Weather predictions are collected per segment/arc and is added as meta-data
to each arc. This chapter introduced two different MILP models to address the single-vehicle
routing problem with a solar panel. The basic model was described initially, and complexity
was systematically added to the models to make the thought process clear. The BEV physics
were described from a free body diagram and an expression to calculate the energy on a slope
with a constant velocity was determined. Practical solar irradiation calculations were described
with illustrations which were used in the simulations. The vector calculations needed for the
wind speed and wind direction were described in detail. Segment energy graph generation
used wind calculations and solar irradiation calculations to simulate each segment’s vehicle
energy usage. Finally, model improvements were described; this included charging stations and
acceleration energy between segments. In the next chapter, the results for models and simulations
are discussed.





4
R E S U LT S A N D A N A LY S I S

4.1 introduction

In this chapter, the results of employing the proposed models are analysed and discussed. Vehicle
parameters provided in Table 1 are used to generate results in this chapter. First, descriptions
of the naming conventions are given. The initial prefix, either FC or P, indicates the primary
model used, FC for the flow conservation model and P for the path-based model. The mid-part
of the model name shows the energy graph method used in the model, TRI or BLK. TRI is the
triangle method that uses Special Ordered Set of Type 3 (SOS3) to model energy graphs and
BLK is a block method that uses Special Ordered Set of Type 2 (SOS2) to model energy graphs.
Feasible solutions can be used to improved the total runtime and solution quality when used as a
warm-start. These feasible solutions are obtained from heuristic algorithms. Finally, the suffix
is an indicator for either warm-starts or using heuristic implementations. FC and P are used if
no warm-start or heuristic was used, Kn is used to show a heuristic implementation and FKn
for using warm-start solutions. Kn is for the n shortest path heuristic, and FKn warm-starts the
model with the solution of Kn. Peak memory and time shown in tables are the measurement
using /usr/bin/time -v1 and not the performance measure of the solver, which is the actual total
memory usage and computation time reported by the operating system [75]. A visualisation of
the datasets used can be found in Appendix B.

The results were generated with an AMD RYZEN™ 3900XT@3.8GHz with 64 GB system
memory and the models were implemented with IBM ILOG CPLEX 12.82.

Multiple datasets with different properties are used to compare the model implementations.
The datasets represent real locations across the world, with different weather conditions and
geography. The same time-of-year was used to generate weather data for the locations involved.
Weather data used in these optimisation runs were obtained using solarpy3 for clear sky radiation
and Weatherbit for weather forecasts. Table 2 shows the number of arcs and vertices each dataset
has, along with the source ID, target ID and the number of paths that exist between the source
and the target.

FC-TRI-FC is the flow conservation model with SOS3 energy graphs. P-TRI-P is the path-based
model with SOS3 energy graph constraints, where all possible paths between the source and
destination vertices are generated. P-TRI-Kn is the path-based model, with SOS3 energy graph
constraints, limiting the number of paths generated to n, making P-TRI-Kn a heuristic algorithm.
The proposed optimisation models minimise total travel time of a Battery Electric Vehicle (BEV)
with an energy budget, known weather conditions and twelve velocity knots ranging from 0 m s−1

to 33.33 m s−1. The BEV has a solar panel attached unless otherwise stated.

When considering flow conservation models with warm-starts, it is crucial to know that the
preprocessing computation time is not accounted for in the result tables. The intention is to see if

1 /usr/bin/time should not be confused with time, for more details visit https://man7.org/linux/man-pages/man1/
time.1.html

2 The application was compiled with gcc 10.2.0
3 solarpy is a python library to approximate solar irradiation on a plane for a given timestamp.
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Table 2: Details of datasets used to generate results.
General Location Dataset |V| |A| Source ID Target ID Number of paths

Freestate, South Africa small001 17 17 1 16 1

North-West, South Africa small002 25 24 17 34 2

Lisbon, Portugal small003 61 97 44 60 8

Northern Cape, South Africa small004 71 97 249 168 132

Easter Cape, South Africa small005 14 18 262 256 6

Mato Grosso do Sul, Brazil small006 33 49 275 291 16

Missouri, United States small007 18 24 300 309 9

Saskatchewan, Canada small008 28 56 310 319 64

Agadez, Niger small009 17 36 349 351 8

Chongqing, China small010 37 93 382 355 440

Lesotho medium001 432 437 473 570 3

Port Harcourt, Nigeria medium002 185 186 850 861 4

Madagascar medium003 225 444 1033 1255 30

Northern Cape, South Africa medium004 30 108 1278 1258 187478

partial warm-start solutions can be beneficial for the flow conservation models. The total runtime
of a flow conservation model with warm-starts, including the preprocessing, is the sum of the
path-based heuristic and the flow conservation model runtime, e.g. the total runtime of F-TRI-FK1

is runtime(P-TRI-K1) + runtime(F-TRI-FK1).

The next two sections’ results of various datasets with a solver time-limit of six minutes are
given and discussed, followed by results of datasets that did not solve within six minutes and for
which a time-limit of one hour is applied.

4.2 results of various datasets

In this section, the triangle method is used to model energy graphs for all the different implemen-
tations. Although the modelling of energy graphs with the triangle method is more elegant than
the block method, solvers do not have the same level of support for SOS3 as they have with SOS2.
Two sets of results are calculated, one with the energy used between acceleration accounted for
between segments, and one without acceleration. The results are only shown for datasets where
at least one feasible solution was found.

4.2.1 Results of models with triangle-based energy graphs and a solver time-limit of six minutes

Result tables to follow show the model name, total runtime, the peak memory usage, the best
objective value obtained and the relative gap when a solar panel is attached to the BEV. When the
relative gap is marked with ∗, it indicates the path-based heuristic was used, and the relative gap
does not reflect the gap of the exact model but instead gives some indication of completion of
its own search space. Table 3 shows the results for the datasets that obtained a feasible solution
within a six-minute solver time-limit. Some datasets, such as small004 are excluded from Table 3

because no solution was found.

Table 3 shows that both the path-based and flow conservation models result in an optimal
value of 2296.17 seconds under 4 seconds of total computation time for small001. The heuristic
implementations also obtain the optimal solution because the shortest path is the optimal solution.
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Table 3: Results for models with triangle-based energy graphs and a solver time-limit of six minutes
for small001, small002, small003 and small005.

Dataset Model Runtime Peak Memory (KB) Objective Value Relative Gap

small001

FC-TRI-FC 3.71379 872472 2296.17 0

FC-TRI-FK1 2.86928 524432 2296.17 0

P-TRI-K1 3.64478 739984 2296.17 *0

P-TRI-P 3.7275 761564 2296.17 0

small002

FC-TRI-FC 9.60379 1247668 1839.95 0

FC-TRI-FK1 8.90337 905832 1839.95 0

FC-TRI-FK2 6.47111 942500 1839.95 0

P-TRI-K1 4.35747 931096 1877.45 *0

P-TRI-K2 56.1519 2490128 1839.95 *0

P-TRI-P 58.3981 2407928 1839.95 0

small003

FC-TRI-FC 194.606 8211420 662.058 0

FC-TRI-FK1 248.883 7609988 662.058 0

FC-TRI-FK2 301.196 5631204 662.058 0

FC-TRI-FK3 300.099 5762752 662.058 0

P-TRI-K1 3.49898 882632 662.058 *0

P-TRI-K2 43.5951 1759128 662.058 *0

P-TRI-K3 356.724 3821868 662.058 0

small005

FC-TRI-FC 360.526 1421656 17396 0.463426

FC-TRI-FK1 366.505 2330128 14142.6 0.318497

FC-TRI-FK2 382.348 1551168 15605.8 0.301825

FC-TRI-FK3 371.962 1732992 15307.6 0.384945

P-TRI-K1 360.819 901524 14142.6 *0.170615

P-TRI-K2 360.338 3089012 18045.5 *0.450088

P-TRI-K3 360.493 3295772 30211.9 *0.682298

P-TRI-P 360.494 3256144 210100 0.955572

The flow conservation model uses slightly more memory than the path-based model. The small001
dataset only has 14 vertices and 18 arcs, which is a relatively small dataset, and the results do
not reflect the performance of the model implementations, but it is useful for implementation
verification with visual inspection.

The small002 dataset has 25 vertices, and 25 arcs, which is also a small dataset. The flow
conservation model performs significantly better than the path-based model. P-TRI-K1 has an
optimal value of 1877.45, which is higher since it is a heuristic solution where only one path was
used. The second shortest path is the optimal path, small002 only have two paths. The runtime of
the flow conservation model showed some improvement when the heuristic solution was used as
a warm-start.

Dataset small003 has 61 vertices and 97 arcs and the arc distances are relatively small; most
arcs are shorter than 500 m. The dataset has multiple possible paths, but once again, the shortest
path is the optimal path. The path-based heuristics are extremely fast, since multiple arcs are
eliminated, which makes the Linear Programming (LP) significantly smaller. The SOS3 associated
with each arc increases the model size as the number of arcs increase. There can be an exponential
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number of binary variables for the path-based model when the number of paths is exponential;
this is the case for dense graphs. After the time-limit of 360 seconds, CPLEX did not supply
a single solution for the path-based model. The heuristics found a solution, but it is only a
coincidence that the shortest path is optimal. The results can be verified with the optimal solution
of the flow conservation model.

Dataset small005 dataset has 14 vertices and 18 arcs with an average edge degree of 1.29.
Dataset small005 is a more densely connected graph than the previous datasets that were solved.
The arcs span distances ranging up to 11 km which is considerably more than the previous
datasets. All the models reached the time-limit of 360 seconds. Once more, the shortest path
heuristic provided the best-known result but did not solve to optimality. Using the path-based
heuristic solution as a warm-start significantly affected the solution quality provided by the flow
conservation model. The path-base models had a higher memory usage than the flow conservation
model.

Unfortunately, the model implementation did not find a feasible solution within the time-
limit of 360 seconds by using SOS3 constraints for the energy graphs for all the datasets.
Only small001, small002, small003 and small005 had feasible solutions. SOS3 is not a standard
implementation in solvers, and there are no speed-ups to using it. An alternative approach is to
use SOS2 for the energy graphs—the results for when energy graphs use SOS2 are discussed in
Section 4.2.3.

4.2.2 Results of models with triangle-based energy graphs accounting for acceleration and a solver
time-limit of six minutes

In this section, the energy used to accelerate from one velocity to another between segments are
included in the Mixed Integer Linear Programming (MILP) models. Only the results for datasets
where at least one feasible solution was found are shown in Table 4.

Table 4 shows the results for the small001, small002, small003 and small005, where a SOS3

approach was used for modelling the energy graph and with acceleration included in the models.
The results are similar to what is provided in Table 3, since the battery is not drained when
driving at maximum speed throughout the whole route.

The flow conservation model performs better than the path-based model with respect to
computation time and memory usage on small002. With the k-shortest path heuristic, when
only a single path was selected, it was 24.45% faster and used 20.76% less memory, but had an
objective value 2.04% worse than the optimal solution of the original problem. Using the result of
the k-shortest path heuristic as a warm-start for the flow conservation model increased the overall
run-time.

For small003, the path-based model did not solve within the given solver time-limit of 360

seconds and had a peak memory usage of 11.6 GB. The k-shortest path heuristic limited to only
the shortest path had an extremely fast execution time. The shortest path was the optimal path,
but it is not always the case. In cases of restricted speed on a segment of the shortest path or the
influence of weather in such a way that makes another path more attractive, may lead to optimal
solutions that are not the shortest path. When more paths were considered, the run-time increased
significantly. With k = 3 the heuristic did not solve to optimality4.

4 Optimality with the heuristic refers to the best possible solution the heuristic can provide with limited paths, not
optimality of the original problem that includes the complete search space.
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Table 4: Results for models with triangle-based energy graphs which accounts for acceleration and six-
minute solver time-limit using small001, small002, small003 and small005.

Dataset Model Runtime Peak Memory (KB) Objective Value Relative Gap

small001

FC-TRI-FC 3.72239 832940 2296.17 0

FC-TRI-FK1 3.50122 819936 2296.17 0

P-TRI-K1 3.46102 815072 2296.17 *0

P-TRI-P 3.30325 811460 2296.17 0

small002

FC-TRI-FC 6.16336 1209060 1839.95 0

FC-TRI-FK1 12.4038 1225116 1839.95 0

FC-TRI-FK2 7.47612 1196064 1839.95 0

P-TRI-K1 4.65639 958196 1877.45 *0

P-TRI-K2 59.7702 2546964 1839.95 *0

P-TRI-P 59.663 2518856 1839.95 0

small003

FC-TRI-FC 94.1978 5497064 662.058 0

FC-TRI-FK1 205.091 6124208 662.058 0

FC-TRI-FK2 97.5271 5696020 662.058 0

FC-TRI-FK3 77.4308 5504292 662.058 0

P-TRI-K1 3.51932 861464 662.058 *0

P-TRI-K2 211.253 2807076 662.058 *0

P-TRI-K3 361.326 3625944 673.79 *0.856972

small005

FC-TRI-FC 360.341 1820360 27444.3 0.896535

FC-TRI-FK1 387.972 3022124 9204.14 0.203059

FC-TRI-FK2 370.755 2106076 9272.27 0.237389

FC-TRI-FK3 374.214 1757176 11061.5 0.526702

P-TRI-K1 360.12 1226196 15763.2 *0.400567

P-TRI-K2 366.237 3934336 20326.2 *0.594929

P-TRI-K3 360.285 2143128 45340.9 *0.832364

The source node of small005 is in Swellendam, Western Cape, South Africa and the destination
node in Guguletu, Western Cape, South Africa. Not a single model solved to optimality, but the
flow conservation model with warm-start solutions had the best objective values and relative
gaps. Considering only the flow conservation model with warm-starts is not sufficient since these
models’ actual total run-time is the sum of the path-based heuristics and the flow conservation
model. Thus the actual run-time of FC-TRI-FK1 is 748.092 seconds, similar for FC-TRI-FK2

and FC-TRI-FK3. A fair comparison would be the same total run-time which includes the heuristic
algorithms. The main reason for the separate total run-time is to compare the effect of a heuristic
solution as a warm-start to one without a warm-start; this may indicate whether a problem specific
heuristic will be beneficial to the model implementation.

The six-minute time-limit is chosen for practicality. The route optimisation should be relatively
fast since the route calculation should happen moments before driving. It is clear that the models
do not scale well with SOS3 energy graphs, the results of energy graphs that use SOS2 follows in
the next subsection.
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4.2.3 Results of various datasets, with rectangular-based energy graphs and a solver time-limit of six
minutes

Table 5: Results for models with rectangular-based energy graphs and six-minute solver time-limit us-
ing small001, small002, small003, small005 and small009.

Dataset Model Runtime Peak Memory (KB) Objective Value Relative Gap

small001

FC-BLK-FC 0.293511 127672 2296.17 0

FC-BLK-FK1 0.194257 68468 2296.17 0

P-BLK-K1 0.246475 99404 2296.17 *0

P-BLK-P 0.25291 100120 2296.17 0

small002

FC-BLK-FC 0.473313 167592 1839.95 0

FC-BLK-FK1 0.307103 82532 1839.95 0

FC-BLK-FK2 0.286997 89220 1839.95 0

FC-BLK-FK3 0.280605 89152 1839.95 0

P-BLK-K1 0.335495 137332 1877.45 *0

P-BLK-K2 1.08827 226832 1839.95 *0

P-BLK-K3 1.11511 229500 1839.95 *0

P-BLK-P 1.13672 229972 1839.95 0

small003

FC-BLK-FC 5.13938 592464 662.058 0

FC-BLK-FK1 4.5548 473708 662.058 0

FC-BLK-FK2 4.70369 473680 662.058 0

FC-BLK-FK3 4.32953 475096 662.058 0

P-BLK-K1 0.367286 146224 662.058 *0

P-BLK-K2 1.01974 222296 662.058 *0

P-BLK-K3 3.3168 315396 662.058 *0

P-BLK-P 30.7036 1491840 662.058 0

small005

FC-BLK-FC 1.37122 165876 11866.6 0

FC-BLK-FK1 0.898492 104496 11866.6 0

FC-BLK-FK2 0.924648 104224 11866.6 0

FC-BLK-FK3 0.886929 103384 11866.6 0

P-BLK-K1 0.410791 92984 11866.6 *0

P-BLK-K2 2.0587 171228 11866.6 *0

P-BLK-K3 14.2027 259136 11866.6 *2.00888e-05

P-BLK-P 66.8271 727668 11866.6 0

small009

FC-BLK-FC 360.046 827568 368599 0.295897

FC-BLK-FK1 54.0387 496532 348030 0

FC-BLK-FK2 54.2967 491376 348030 0

P-BLK-K1 49.792 285164 348030 *9.84764e-05

P-BLK-K2 360.03 2059528 348030 *0.402317

Table 5 shows the results for small001, small002, small003, small005 and small009, with a time-limit
of six minutes, SOS2 for the energy graphs, a solar panel attached to the BEV and not accounting
for acceleration. The rectangular-based energy graphs have a clear computational advantage
over triangle-based energy graphs. The flow conservation model is more than 12 times faster,
and the path-based model more than 14 times faster when using SOS2 over SOS3 for the energy
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graphs for small001. The peak memory usage of all models is also much lower when using
rectangular-based energy graphs over triangle-based energy graphs. For small001 the error on
the energy consumed is neglectable, but may vary depending on the size and complexity of the
dataset. The energy errors will be discussed at a later stage in this chapter.

Compared to the same setup but with triangle-based energy graphs, the models with rectangular-
based energy graphs solve significantly faster than triangle-based energy. The small002 dataset
with triangle-based energy graphs using the flow conservation model solved to optimality in
9.6 seconds, where the flow conservation model with rectangular-based energy graphs solved
to optimality in 0.47 seconds. The peak memory usage of the flow conservation model with
rectangular energy graphs only used 13.4% of the peak memory the flow conservation model
with triangle-based energy graphs used. These speed-ups and lower peak memory usages apply
to both the flow conservation and path-based models. The objective values are the same, for
both implementations, but there may be some variations in the total energy consumed, which is
addressed later in this chapter.

With small003 the flow conservation and path-based model solved to optimality. The path-based
model with SOS2 energy graphs had a total run-time of 30.70 seconds, where the path-based
model with SOS3 energy graphs did not find a solution within the solver time-limit of six minutes.
The flow conservation model with SOS2 energy graphs had a total runtime of 5.14 seconds, where
the flow conservation model with SOS3 energy graphs had a runtime of 194.61 seconds, which is
a 3686% increase in runtime.

The flow conservation model and path-based model solved to optimality with small005 where
the SOS3 energy graph counterpart had a relative gap greater than zero. The best solution
obtained from all the models with triangle-based energy graphs was the flow conservation model
with the shortest path as a warm-start, which yielded an objective value of 14142.6 seconds. The
flow conservation model with SOS2 energy graphs had a total runtime of 1.37 seconds and had
an optimal solution of 11866.6 seconds. Which is 16.09% lower than the best solution with SOS3

energy graphs. The peak memory usage of all the models with SOS2 energy graphs where also
lower than the SOS3 energy graph counterparts.

Dataset small009 did not solve to optimality with the time-limit of six minutes when using the
flow conservation model without warm-start solutions. When solutions from the k-shortest path
heuristics were used as a warm-start for the flow conservation model, it had a significant impact.
The P-BLK-K1 had a total run-time of 49.792 seconds and the FC-BLK-FK1 had a run-time of
54.0387 which is 103.8307 seconds total; this is a faster run-time than without a warm-start, also
without the warm-start the flow conservation model did not solve to optimality.

Table 6 shows the results for medium002 and medium004, with a time-limit of six minutes, SOS2

for the energy graphs, a solar panel attached to the BEV and not accounting for acceleration.
For medium002, the shortest path was once again the optimal path. When using the shortest path
solution as a warm-start to the flow conservation model the run-time decreased by 24.43%. The
flow conservation model had a 86.07% lower run-time than the path-based model that considers
all possible paths.

Using warm-starts for medium002 had a negative impact on the total run-time of the flow
conservation model. The path-based model that considers all possible paths did not find a
solution within the solver time-limit of six minutes. The shortest path was the optimal path and
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Table 6: Results for models with rectangular-based energy graphs and six-minute solver time-limit us-
ing medium002 and medium004.

Dataset Model Runtime Peak Memory (KB) Objective Value Relative Gap

medium002

FC-BLK-FC 19.727 1140256 1920.7 0

FC-BLK-FK1 14.9069 1004740 1920.7 3.70071e-08

FC-BLK-FK2 15.3368 1002704 1920.7 3.70071e-08

FC-BLK-FK3 14.8211 1003648 1920.7 3.70071e-08

P-BLK-K1 1.86063 369716 1920.7 *0

P-BLK-K2 12.4576 938332 1920.7 *0

P-BLK-K3 17.9588 1403876 1920.7 *0

P-BLK-P 141.619 2189992 1920.7 0

medium004

FC-BLK-FC 13.9192 802512 53733.1 0

FC-BLK-FK1 20.8126 832776 53733.1 0

FC-BLK-FK2 20.1176 841528 53733.1 0

FC-BLK-FK3 20.0532 830600 53733.1 0

P-BLK-K1 3.83809 131420 53733.1 *0

P-BLK-K2 31.5478 315012 53733.1 *0

P-BLK-K3 360.041 1053992 53733.1 0.377986

the path-based heuristic had a total run-time of 3.84 seconds, which can be verified with the flow
conservation model.

4.2.4 Results of various datasets, with rectangular-based energy graphs accounting for acceleration and a
solver time-limit of six minutes

Table 7 shows the results for small001, small002, small003, small005 and small009 with SOS2

energy graphs, accounting for BEV acceleration energy and a solver time-limit of six minutes. The
runtime is more than ten times faster than the SOS3 energy graph counterpart in Table 4.

All the variations of models solved to optimality for small001 with an objective function of
2296.17 seconds. The peak memory usage is also significantly lower than the SOS3 energy graph
counterparts.

With small002 the path-based model with SOS2 energy graphs was 54.57 times faster than
the SOS3 energy graph counterpart and a 91.25% decrease in peak memory usage. Similar
performance gains are applicable with the other models, for instance models with SOS2 energy
graphs are by average 41.99 times faster than the SOS3 energy graph alternative. The objective
values and selected routes of small002 are the same as in Table 4.

For small003 the flow conservation model had a runtime of 6.08 seconds which is a 85.78%
decrease in runtime of the path-based model. The peak memory usage of the path-based model is
149.30% more than the flow conservation model. The path-based heuristic with k = 1 obtained the
optimal solution, since the shortest path is the optimal path. Using the results of the path-based
heuristic with only the shortest path as a warm-start improved the total runtime of the flow
conservation model by 6.82%.

The source node of small005 started in Swellendam, Western Cape, South Africa and the
destination node ended in Guguletu, Western Cape, South Africa. The flow conservation model
was solved to optimality under one second, where the path-based model had a total runtime
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Table 7: Results for models with rectangular-based energy graphs which accounts for acceleration and
six-minute solver time-limit using small001, small002, small003, small005 and small009.

Dataset Model Runtime Peak Memory (KB) Objective Value Relative Gap

small001

FC-BLK-FC 0.298111 113256 2296.17 0

FC-BLK-FK1 0.200373 71412 2296.17 0

P-BLK-K1 0.284626 114116 2296.17 *0

P-BLK-P 0.277422 109124 2296.17 0

small002

FC-BLK-FC 0.515547 167760 1839.95 0

FC-BLK-FK1 0.283916 83436 1839.95 0

FC-BLK-FK2 0.315634 81443 1839.95 0

*P-BLK-K1 0.367422 121020 1877.45 *0

*P-BLK-K2 0.567422 145320 1839.95 *0

P-BLK-P 1.09316 220256 1839.95 0

small003

FC-BLK-FC 6.08045 638736 662.058 0

FC-BLK-FK1 5.21112 619448 662.058 0

FC-BLK-FK2 5.31727 617600 662.058 0

FC-BLK-FK3 5.46467 613744 662.058 0

P-BLK-K1 0.454383 141964 662.058 *0

P-BLK-K2 1.06796 229064 662.058 *0

P-BLK-K3 3.2346 332688 662.058 *0

P-BLK-P 42.7505 1592340 662.058 0

small005

FC-BLK-FC 0.859285 159960 8577.69 0

FC-BLK-FK1 0.868431 152296 8577.69 0

FC-BLK-FK2 0.88456 152296 8577.69 0

FC-BLK-FK3 0.838883 154952 8577.69 0

P-BLK-K1 0.340315 93580 11833.1 *8.97253e-05

P-BLK-K2 1.71402 174188 11832.1 *0

P-BLK-K3 11.2351 268264 11832.1 *0

P-BLK-P 23.3242 516636 8577.69 0

small009

FC-BLK-FC 61.6446 555520 336743 0

FC-BLK-FK1 9.6654 291200 336743 0

FC-BLK-FK2 9.28272 298548 336743 0

FC-BLK-FK3 364.849 1182728 358310 0.153328

P-BLK-K1 82.3564 276448 348029 *9.87031e-05

P-BLK-K2 360.027 1676800 348029 *0.507135

P-BLK-K3 363.301 5287536 368573 *0.550997

of 23.32 seconds. With SOS3 energy graphs, not a single model solved to optimality, and the
path-based model using all paths did to get a single solution. The memory usage of the SOS3

energy graph counterpart also had a significantly higher peak memory usage for all the models.
The SOS2 for energy graphs has a clear advantage over the SOS3 energy graphs. The k-shortest
path heuristic yielded the same objective value for K1, K2 and K3, which was the shortest path.
The average arc distance is 35 km, which is significantly longer than the other small datasets.
The small datasets that solved quickly in most cases chose the maximum speed, with the shortest
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route, which is optimal when the battery capacity is large, and the routes are short. It is not the
case for the small005 datasets.

Dataset small009 has 17 vertices and 36 arcs with the source node in Mutum, Nigeria and
the destination node in Bordj Badji Mokhtar, Algeria which is more than 2000 km apart. The
flow conservation model obtained the optimal solution in 61.64 seconds, where the warm-start
solutions significantly increased the total runtime when K1 and K2 were used. When K3 was used,
it had a negative impact on the total run-time and peak memory usage of the flow conservation
model, since the heuristic with K3 did not solve to optimality and had a solution with a worse
objective value than for K1 and K2. The k-shortest path heuristics had a longer run-time than the
flow conservation model. The SOS3 energy graph flow conservation and path-based counterpart
did not obtain a single solution for this dataset.

Table 8: Results for models with rectangular-based energy graphs which accounts for acceleration and
six-minute solver time-limit using medium002 and medium004.

Dataset Model Runtime Peak Memory (KB) Objective Value Relative Gap

medium002

FC-BLK-FC 26.3551 1218260 1900.93 0

FC-BLK-FK1 13.3378 988536 1900.93 0

FC-BLK-FK2 13.2547 988584 1900.93 0

FC-BLK-FK3 13.1571 993020 1900.93 0

P-BLK-K1 2.12822 350568 1900.93 *0

P-BLK-K2 14.5493 1011700 1900.93 *0

P-BLK-K3 32.21 1817032 1900.93 *0

P-BLK-P 82.3644 2327904 1900.93 0

medium004

FC-BLK-FC 360.131 2650352 52896.5 0.946309

FC-BLK-FK1 362.422 2337448 48169.6 0.895698

FC-BLK-FK2 362.373 2323368 48169.6 0.895698

FC-BLK-FK3 362.368 2311668 48169.6 0.895716

P-BLK-K1 3.64261 133912 53731.9 *0

P-BLK-K2 53.9718 893412 53731.9 *0

P-BLK-K3 360.034 1488564 53731.9 *0.38376

Table 8 shows the results for medium002 and medium004 with BEV acceleration accounted for
and a six-minute solver time-limit. Dataset medium002 has 185 vertices and 186 arcs and the edge
degree is close to one; there are not many paths to explore between the source and target nodes.
The start node is in Aba, Nigeria and the destination node in Umuahia, Nigeria. The road limits
were set to 120 km per hour, which is not the actual road limits, and the driving time is estimated
at 1900.93 seconds. The flow conservation model solved in 26.3551 seconds which is 68% decrease
in total runtime compared to the path-based model. The path-based heuristic when only the
shortest path was considered solved in 2.13 seconds and improved the flow conservation model’s
total runtime by 41.32%; this is likely because the shortest path was the optimal path.

Dataset medium004 has 30 vertices and 108 arcs where the edge degree of the dataset is more
than three. The vehicle is allowed to drive 120 km per hour and uses undocumented roads. The
starting node is in Keimoes, Northern Cape and the destination node is in West Coast DC, Western
Cape. The models struggled to reduce the relative gap within six minutes. The path-based
heuristic with K1 solved in 3.64 seconds. When the K1, K2 and K3 heuristic solutions were used as
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a warm-start for the flow conservation model, the objective value obtained was better and the
relative gap lower. However, the actual total runtime is the sum of the heuristic and the flow
conservation model; but this still shows that the shortest path heuristic solution may improve
solution quality.

The six-minute time-limit was chosen for practicality. The route optimisation should be relatively
fast since the route calculation should be able to happen dynamically. When the model use SOS2

for energy graphs, there was a significant total runtime and memory improvement for all models.
The models solve relatively fast when the total travel distance of the BEV is short. The total solving
time increases when the knots with maximum velocity cannot be chosen, which is when the battery
capacity is not enough to travel the shortest route at maximum speed; this is when the arc distances
are more than 10 km long. The path-based model performs better when the total number of
paths are lower, and overall it seems that the shortest path heuristic benefits the flow conservation
model. Not all the datasets solved; more datasets were solved with the rectangular-based energy
graph implementation than with the triangle-based energy graph counterpart.

Overall the optimal route is the fastest route when the battery is not depleted when driving at
maximum speed, which was the case for many datasets. In the next section, solving the remaining
datasets with a solver time-limit of one hour is presented.

4.2.5 Results of various datasets that were not solved within six minutes

The tables in this section describe the results where at least one solution within one-hour was
found. There is an indication of whether acceleration was accounted for and if the BEV had a solar
panel attached. Whenever a model did not find a solution, it will be indicated in the objective
value field as either memory-limit or time-limit reached.

Table 9 shows the results of small004 with a one-hour solver time-limit. In most cases, the
time-limit was reached without a solution. None of the models that use the triangle method for
energy graphs found a solution within one-hour. The only solution found within time was the
shortest path heuristic with the block method for energy graphs.

Table 10 shows the results of small006 with a one-hour solver time-limit. The models with
triangle-based energy graphs did not find a solution within one-hour. For small006, the acceleration
did not play a significant role in the solutions found. The shortest path heuristic was the only
model that did not run out of time or memory.

Table 11 shows the results of small007, with a one-hour time-limit. The shortest path heuristic
produced a solution after one hour, but did not solve to optimality for any combination of
parameters. The flow conservation model was numerically unstable when a solar panel was
attached to the vehicle. The model’s numerical instability is caused by the chosen value of M.
Table 12 shows the results of medium001 with a one-hour solver time-limit. The k-shortest path

heuristic shows there is no solution for the shortest path, with or without a solar panel attached.
The k-shortest path found a solution when using the second shortest path with a solar panel
and block-based energy graphs. When the energy used to accelerate the BEV from one speed to
another was accounted for, the objective value was 105,132 seconds with a 90.14% relative gap;
this is for a heuristic, so the gap does not reflect bounds for the exact models. Similar results were
obtained when not accounting for acceleration energy.

Table 13 shows the results of medium004 with a one-hour solver time-limit. The partial warm-
start solutions did not improve the solution quality of the flow conservation model for medium004.
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Table 9: Results for small004 with a one-hour solver time-limit.
Solar
Panel

Acceleration Method Runtime (s)
Peak

Memory (KB)
Objective
Value(s)

Relative
Gap

Yes No FC-BLK-FC >1h 1503792 Time-limit N/A
P-BLK-K1 1959.25 923448 113143 *0

P-BLK-K2 >1h 26630612 117332 *0.838049

P-BLK-K3 >1h >32 GB 112527 *0.83774

FC-BLK-FK1 >1h 1282440 Time-limit N/A
FC-BLK-FK2 >1h 1284448 Time-limit N/A
FC-BLK-FK3 >1h 1282596 Time-limit N/A

P-BLK-P >1h 23554016 Time-limit N/A

Yes Yes FC-BLK-FC >1h 1492664 Time-limit N/A
P-BLK-K1 1918.13 920740 53766.3 0

P-BLK-K2 >1h 27542392 117332 *0.838049

P-BLK-K3 >1h 31996104 112527 *0.83774

FC-BLK-FK1 >1h 1273068 Time-limit N/A
FC-BLK-FK2 >1h 1270012 Time-limit N/A
FC-BLK-FK3 >1h 1272100 Time-limit N/A

P-BLK-P >1h 23507760 Time-limit N/A

No Yes FC-BLK-FC 18.2456 885210 No Solution N/A
P-BLK-K1 >1h 2437312 No solution N/A
P-BLK-K2 >1h 2814336 No solution N/A
P-BLK-K3 >1h 3094256 No solution N/A
P-BLK-P >1h 14157321 Time-limit N/A

Yes No FC-TRI-FC >1h 12978440 Time-limit N/A
P-TRI-K1 >1h 4119420 Time-limit N/A
P-TRI-K2 >1h 17643660 Time-limit N/A
P-TRI-K3 >1h 5148776 Time-limit N/A
P-TRI-P 526.58 >32GB Memory-limit N/A

Yes Yes FC-TRI-FC >1h 12990720 Time-limit N/A
P-TRI-K1 >1h 4170856 Time-limit N/A
P-TRI-K2 >1h 17631524 Time-limit N/A
P-TRI-K3 >1h 5297588 Time-limit N/A
P-TRI-P 531.52 >32GB Memory-limit N/A

No Yes FC-TRI-FC 19.1769 861284 No solution N/A
P-TRI-K1 >1h 3039308 No solution N/A
P-TRI-K2 >1h 1747796 No solution N/A
P-TRI-K3 >1h 994256 No solution N/A
P-TRI-P >1h 15567220 Time-limit N/A

The rectangular-based shortest path heuristic had the best known solution of 53766.3 seconds with
a runtime of only 6.84 seconds. Similar results were obtained when acceleration was accounted
for, with a runtime of 5.6967 seconds. The lack of a solar panel had a great influence on the total
runtime of this datasets; it took 2194.34 seconds to obtain a solution of 186,190 seconds with
the shortest path heuristic; this indicates the BEV needs to drive more than three times slower
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Table 10: Results for small006 with a one-hour solver time-limit.
Solar
Panel

Acceleration Method Runtime (s)
Peak

Memory (KB)
Objective
Value(s)

Relative
Gap

Yes No FC-BLK-FC >1h 3057636 Time-limit N/A
P-BLK-K1 >1h 23138624 320078 *0.379792

P-BLK-K2 >1h >32GB Time-limit *0.838049

P-BLK-K3 >1h 6715296 Time-limit *0.83774

FC-BLK-FK1 >1h 19263376 Time-limit N/A
P-BLK-P >1h 5745376 Time-limit N/A

Yes Yes FC-BLK-FC >1h 3043096 Time-limit N/A
P-BLK-K1 >1h 23330460 320078 *0.380518

P-BLK-K2 >1h >32GB Time-limit N/A
P-BLK-K3 >1h 6729788 Time-limit N/A

FC-BLK-FK1 >1h 19413812 Time-limit N/A
P-BLK-P >1h 5776960 Time-limit N/A

No Yes FC-BLK-FC >1h 19363936 Time-limit N/A
P-BLK-K1 >1h 3457864 Time-limit N/A
P-BLK-K2 >1h 3569476 Time-limit N/A
P-BLK-K3 >1h 3758172 Time-limit N/A
P-BLK-P >1h 5921664 Time-limit N/A

Yes No FC-TRI-FC >1h 5503144 Time-limit N/A
P-TRI-K1 >1h 22838880 Time-limit N/A
P-TRI-K2 >1h 4016772 Time-limit N/A
P-TRI-K3 >1h 4433680 Time-limit N/A
P-TRI-P >1h 20771148 Time-limit N/A

Yes Yes FC-TRI-FC >1h 5491508 Time-limit N/A
P-TRI-K1 >1h 22833732 Time-limit N/A
P-TRI-K2 >1h 4032464 Time-limit N/A
P-TRI-K3 >1h 4445120 Time-limit N/A
P-TRI-P >1h 20539232 Time-limit N/A

No Yes FC-TRI-FC >1h 26982620 Time-limit N/A
P-TRI-K1 >1h 8452132 Time-limit N/A
P-TRI-K2 >1h 7990440 Time-limit N/A
P-TRI-K3 >1h 5367672 Time-limit N/A
P-TRI-P >1h 20189384 Time-limit N/A

on the shortest path when a solar panel was not attached. The lack of a solar panel attached to
the BEV causes the battery State of Charge (SoC) to decrease for any speed thus energy graphs on
each segment that can be solved with less effort. When the two shortest paths are considered, a
solution was found within 303.09 seconds, with an objective value of 95,519.4 seconds.
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Table 11: Results for small007 with a one-hour solver time-limit.
Solar
Panel

Acceleration Method Runtime (s)
Peak

Memory (KB)
Objective
Value(s)

Relative
Gap

Yes No FC-BLK-FC 9.07 259476 Unstable N/A
P-BLK-K1 >1h 23138624 380856 *0.066016

P-BLK-K2 >1h 4188932 Time-limit N/A
P-BLK-K3 >1h 910920 Time-limit N/A

FC-BLK-FK1 16.16 383604 Unstable N/A
P-BLK-P >1h 3956784 Time-limit N/A

Yes Yes FC-BLK-FC 8.90 261364 Unstable N/A
P-BLK-K1 >1h 3403036 380856 *0.064989

P-BLK-K2 >1h 4280536 Time-limit N/A
P-BLK-K3 >1h 914580 Time-limit N/A

FC-BLK-FK1 15.5886 381996 Unstable N/A
P-BLK-P >1h 3969828 Time-limit N/A

No Yes FC-BLK-FC 50.51 472236 Unstable N/A
P-BLK-K1 >1h 3529012 401220 *0.123865

P-BLK-K2 >1h 3652008 Time-limit N/A
P-BLK-K3 >1h 14187760 Time-limit N/A

FC-BLK-FK1 11.50 285156 Unstable N/A
P-BLK-P >1h 3727012 Time-limit N/A

Yes No FC-TRI-FC >1h 3981152 Time-limit N/A
P-TRI-K1 >1h 4403620 383440 *0.345274

P-TRI-K2 >1h 11434160 Time-limit N/A
P-TRI-K3 >1h 3956532 Time-limit N/A

FC-TRI-FK1 >1h 12369712 Time-limit N/A
P-TRI-P >1h 6498428 Time-limit N/A

Yes Yes FC-TRI-FC >1h 3980748 Time-limit N/A
P-TRI-K1 >1h 4542096 383331 *0.304528

P-TRI-K2 >1h 11397444 Time-limit N/A
P-TRI-K3 >1h 15125976 Time-limit N/A
P-TRI-P >1h 6663872 Time-limit N/A

No Yes FC-TRI-FC >1h 4814852 411214 0.589439

P-TRI-K1 >1h 1878868 403207 *0.351031

P-TRI-K2 >1h 7454228 Time-limit N/A
P-TRI-K3 >1h 15086716 Time-limit N/A

FC-TRI-FK1 >1h 4545808 Time-limit N/A
P-TRI-P >1h 15984116 Time-limit N/A
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Table 12: Results for medium001 with a one-hour solver time-limit.
Solar
Panel

Acceleration Method Runtime (s)
Peak

Memory (KB)
Objective
Value(s)

Relative
Gap

Yes No FC-BLK-FC 2234.46 6499352 Unstable N/A
P-BLK-K1 102.608 1006520 No solution N/A
P-BLK-K2 3603.17 17394028 106300 *0.901591

P-BLK-K3 >1h 3294556 Time-limit N/A
P-BLK-P 1835.11 >32 GB Memory-limit N/A

Yes Yes FC-BLK-FC 2242.49 6551740 Unstable N/A
P-BLK-K1 112.43 1011636 No solution N/A
P-BLK-K2 3613.87 17413536 106132 *0.901435

P-BLK-K3 >1h 3280248 Time-limit N/A
FC-BLK-FK2 2357.18 6124694 Unstable N/A

P-BLK-P 1794.99 >32 GB Memory-limit N/A

No Yes FC-BLK-FC 2133.98 6623682 Unstable N/A
P-BLK-K1 105.50 1051544 No solution N/A
P-BLK-K2 >1h 6469484 Time-limit N/A
P-BLK-K3 >1h 5470016 Time-limit N/A
P-BLK-P 1723.45 >32GB Memory-limit N/A

Yes No FC-TRI-FC >1h 29358748 Time-limit N/A
P-TRI-K1 >1h 5977832 Time-limit N/A
P-TRI-K2 >1h 14378712 Time-limit N/A
P-TRI-K3 >1h 15529968 Time-limit N/A
P-TRI-P >1h 23330916 Time-limit N/A

Yes Yes FC-TRI-FC >1h 29565304 Time-limit N/A
P-TRI-K1 >1h 5950536 Time-limit N/A
P-TRI-K2 >1h 14495352 Time-limit N/A
P-TRI-K3 >1h 15559272 Time-limit N/A
P-TRI-P >1h 23306112 Time-limit N/A

No Yes FC-TRI-FC >1h 27073060 Time-limit N/A
P-TRI-K1 >1h 5990056 Time-limit N/A
P-TRI-K2 >1h 12857988 Time-limit N/A
P-TRI-K3 >1h 16176372 Time-limit N/A
P-TRI-P >1h 24180696 Time-limit N/A



68 results and analysis

Table 13: Results for medium004 with a one-hour solver time-limit.
Solar
Panel

Acceleration Method Runtime (s)
Peak

Memory (KB)
Objective
Value(s)

Relative
Gap

Yes No FC-BLK-FC >1h 3756516 53937.1 0.735347

P-BLK-K1 6.84055 133132 53766.3 0

P-BLK-K2 69.715 683120 53766.3 8.5673e-05

P-BLK-K3 2928.3 1826240 53766.3 9.84602e-05

FC-BLK-FK1 >1h 5069148 53937.1 0.900043

FC-BLK-FK2 >1h 5072292 53937.1 0.900043

FC-BLK-FK3 >1h 5073824 53937.1 0.900043

P-BLK-P 727.22 >32 GB Memory-limit N/A

Yes Yes FC-BLK-FC >1h 3722552 53937.1 0.735856

P-BLK-K1 5.69672 133692 53766.3 0

P-BLK-K2 69.1894 683184 53766.3 8.5673e-05

P-BLK-K3 2941.6 1823988 53766.3 9.84602e-05

FC-BLK-FK1 >1h 5064472 53937.1 0.900043

FC-BLK-FK2 >1h 5072236 53937.1 0.900043

FC-BLK-FK3 >1h 5064992 53937.1 0.900043

P-BLK-P 566.43 >32 GB Memory-limit N/A

No Yes FC-BLK-FC >1h 14768345 95519.4 0.985464

P-BLK-K1 2194.34 1224236 186190 0

P-BLK-K2 303.088 1707808 95519.4 9.99997E-05

P-BLK-K3 >1h 3314088 95519.4 9.63038E-05

FC-BLK-FK1 >1h 13562572 95519.4 0.932579

FC-BLK-FK2 >1h 4879304 95519.4 0.96289

FC-BLK-FK3 >1h 5326787 95519.4 0.946327

P-BLK-P 588.46 >32GB Memory-limit N/A

Yes No FC-TRI-FC >1h 10410272 Time-limit N/A
P-TRI-K1 >1h 3196936 64547.7 0.44275

P-TRI-K2 >1h 27207720 54352.9 0.516356

P-TRI-K3 >1h 20923684 Time-limit N/A
FC-TRI-FK1 >1h 15783636 Time-limit N/A
FC-TRI-FK2 >1h 13243696 Time-limit N/A

P-TRI-P 665.82 >32GB Memory-limit N/A

Yes Yes FC-TRI-FC >1h 10349320 Time-limit N/A
P-TRI-K1 >1h 3200056 64547.7 0.44275

P-TRI-K2 >1h 27323144 54352.9 0.517501

P-TRI-K3 >1h 20877380 Time-limit N/A
FC-TRI-FK1 >1h 15607096 Time-limit N/A
FC-TRI-FK2 >1h 13459352 Time-limit N/A

P-TRI-P 501.38 >32GB Memory-limit N/A

No Yes FC-TRI-FC >1h 15931244 Time-limit N/A
P-TRI-K1 >1h 231620 Time-limit 0.662145

P-TRI-K2 >1h 117547 Time-limit 0.237979

P-TRI-K3 >1h 20877380 Time-limit N/A
FC-TRI-FK1 >1h 15276896 Time-limit N/A
FC-TRI-FK2 >1h 10289156 Time-limit N/A

P-TRI-P 863.63 >32GB Time-limit N/A
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4.3 summary

Overall, the k-shortest path heuristic with the block method for approximating energy has the
potential to be used in real-world scenarios. The flow conservation model is more likely to become
numerically unstable compared to the path-based model, especially when the model accounts
for energy used when accelerating. When using the triangle method for creating energy graphs,
models struggled to find feasible solutions within a reasonable time. For most datasets, a solution
was found as the shortest path or the second shortest path. For a route that was only between
close cities, or within a city, the datasets solved in under three minutes. The models failed to
find feasible solutions when the arc length was substantial (>50 km). One reason is that the total
battery usage over that time is more than the battery capacity, since the velocity on the segment
needs to be constant. Another problem is that the slope is not captured in detail with an arc
length of more than 50 km. The weather may change significantly in 50 km, and overall, this
granularity plays a significant role in the solution quality and whether solutions are found. An
apparent method to improve the solution quality is to increase the dataset’s granularity, but as
the number of arcs increases, so does the computation time. When solving for all possible paths,
the path-based model does not always result in a feasible solution, and when the average edge
degree is large (more than 3), the computation time and memory usage to generate all possible
paths are high. Although the flow conservation model has potential, the use of multiple Big M
constraints may create numerical instability. By choosing M to be twice the battery capacity,
correct results were provided, but there were some cases where numerical instability was an
issue. Using the path-based heuristics as a warm-start to the flow conservation model sometimes
positively affected the solution quality. The path-based heuristic can also quickly eliminate short
infeasible paths, which allows a smaller problem to be solved with the path-based model.

The flow conservation model is a better formulation when considering runtime and peak
memory performance since there is no need to define each path explicitly. The path-based model
can more easily be extended to include extra features such as acceleration. In the next chapter, the
path-based model is adapted to solve the race strategy problem of the Sasol Solar Challenge.





5
C A S E S T U D Y

5.1 overview

The Sasol Solar Challenge is a biennial competition where multiple teams from around the world
design and build solar-powered vehicles to travel across South Africa over eight days. The routes
are usually between Pretoria and Cape Town. The data associated with routes include altitude,
speed limit and weather variations. There are multiple loops on each route; for instance, the
participants can take each loop more than once. The objective is to travel the greatest possible
distance with a solar-powered vehicle.

Most of the focus in the past was on mechanical and electrical design, while participants gave
little attention to race strategy. The race strategy is formulated as an optimisation problem by
expanding the general models discussed in Chapter 3. The objective is clear; we need to maximise
distance travelled, accounting for the regulations of the challenges, speed limits on the roads and
weather predictions over eight days.

The problem is similar to the World Solar Challenge but the objective and rules are slightly
different. With the World Solar Challenge the participants need to travel a fixed distance.
The objective of the World Solar Challenge is to minimise the total race time. Most of the
apparent racing strategies apply to both challenges, such as balancing power resources and power
consumption.

The granularity and availability of data need to be considered since it plays a significant role in
the computation-time and memory-usage of the implemented models. The modelling approach
is elaborated on in Section 5.4. Weather data used in this optimisation runs were obtained
using solarpy for clear sky radiation and Weatherbit for weather forecasts.

5.2 related work

Merino et al. [76] proposed an energy management system for the World Solar Challenge that
consists of three stages. The first stage plans for long-term, i.e. several days, the second stage
plans for the current day, and the last stage applies a continuous-time optimal control algorithm
to the problem. The authors mention that their proposed algorithms give an advantage over less
straightforward methods that keep constant speed along the way.

Betancur et al. [77] uses two heuristics to address the World Solar Challenge. They favour the
evolutionary algorithm because the exhaustive search is computationally expensive and the Big
Bang-Big Crunch [78] converges slower.

Shimizu et al. [79] introduced a cruising strategy support system, which consists of three
elements, supervision support, cruising simulation and speed optimising control.

Howlett [80, 81] used dynamic programming (DP) to maximise the expected distance travelled
on the remaining days of the World Solar Challenge. A Markov process with continuous state-
space was used to model the solar radiation. The model performed reasonably, but they did not
take acceleration from one velocity to another into account. The Solar World Challenge held in
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Australia has relatively flat gradients and is predominantly sunny; this may indicate that the race
strategy is less important than the vehicle’s mechanical and electric soundness. The approach of
Howlett closely relates to the case study in this chapter, but with the exception being that there
are no optional loops in the World Solar Challenge.

The masters thesis of Scheidegger [82] also approaches the Solar World Challenge as a DP
problem and accounts for the most significant vehicle and environment factors. The author
implements the energy management optimisation for a solar-powered vehicle as a deterministic
and stochastic problem and defines precise mathematical formulations for the problem. The
drawback to the models implemented by Scheidegger is the lack of accounting energy when
accelerating.

Guerrero and Daurte-Mermoud [76] provided a detailed mathematical description of the vehicle
and a descriptive mathematical model for weekly-, daily- and continuous planning. The authors
implemented the models in MATLAB® using the free Gauss Pseudospectral Optimisation Software
(GPOPS) 4.1. The models do not account for acceleration and use discrete time intervals. The
authors provide simulation results that show the reliability of their models.

The most significant work related to this case study is Oosthuizen et al. [72]. The authors
implement two algorithms, one for single day optimisation using high-resolution data and the
second for multiple-day optimisation but with lower resolution data. The single-day algorithm
uses a sequential quadratic programming solver. It optimises the energy stored by controlling
the vehicle speed where the multiday algorithm optimises for total distance travelled. They
approached the multiday method as a dynamic program that estimates the number of extra loops
the solar-powered vehicle needs to take each day. The algorithms were tested during the 2018

Sasol Solar Challenge, with promising results.

5.3 research problem

There are currently various race strategies documented for the World Solar Challenge, but limited
race strategy algorithms and models exist in the literature for the Sasol Solar Challenge. This
thesis’s approach is slightly different than [72], since the method choice is a Mixed Integer Linear
Programming (MILP) model, which assumes determinism. The approach allows the model
implementation to heavily depend on the weather predictions and vehicle simulations discussed
in section 3.3.1 (more accurate predictions produces more accurate optimisation results with the
same model). This model’s philosophy is, given the most accurate available data, what decision
should be made?

• Given the available weather data for the remaining race days, vehicle and road parameters,
what is the best possible speed to drive the vehicle?

• When there are loops available on the route, how many loops should the vehicle drive?

• When is it advantageous to stay in an area to charge the battery?

5.4 research methodology and contributions

The model described in this chapter extends on the path-based model described in Chapter 3,
since the main advantage of the path-based model is the ability to limit the number of paths. The
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Sasol Solar Challenge has a single predefined path with the ability to drive additional loops. These
loops can easily be incorporated as different paths in the path-based model. The Battery Electric
Vehicle (BEV) simulation, weather simulation and data gathering methods described in Chapter 3

apply to this chapter. The Sasol Solar Challenge demands an efficient solar-powered vehicle with
a thought-through racing strategy that takes road profiles, predicted weather conditions and the
battery state into account.

The objective of this case study is describe usable mathematical models, simulations, and
algorithms that result in a practical race strategy for the Sasol Solar Challenge. The main objective
of this chapter is to develop an optimisation model (MILP) that addresses the race strategy of the
Sasol Solar Challenge and implement a simulation for the vehicle on the road that can be used in
the optimisation model. Additionally, gather or simulate weather data for race conditions.

5.5 model

The objective of the Sasol Solar Challenge is to maximise the total distance travelled of the vehicle
over the span on multiple days. The complexity of the problem arises with the decision of how
many loops the vehicle should drive on each day, and at what speed; these decisions affect future
decisions. The path-based model described in Chapter 3 allows multiple routes to be defined,
paths are the default route with enumerated loops, e.g. the first path is the route without a loop,
the second path is the route with one loop, the third path is a route with two loops, etc. The
path-based model can easily be adjusted to accommodate problems similar to the Sasol Solar
Challenge. The objective is to maximise the total distance travelled, that is

∑
d∈D

∑
ρ∈P(d)

zρζρ, (5.1)

subject to

∑
ρ∈P(d)

ζρ = 1, ∀d ∈ D, (5.2)

τ(|S(ρ)|−1) + t(|S(ρ)|−1) + M(ζρ − 1) ≤ Tdζρ, ∀ρ ∈ P(d), d ∈ D, (5.3)

τ(s−1) + t(s−1) = ts, ∀s ∈ S(ρ)\{0}, ρ ∈ P(d), d ∈ D, (5.4)

vs = ∑
x∈X

αxsvxs, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.5)

τs = ∑
x∈X

αxsτxs, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.6)

αxs ≤ h(x−1)s + hxs, ∀x ∈ X , s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.7)

∑
x∈X\{X}

hxs = ζρ, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.8)

∑
x∈X

αxs = ζρ, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.9)
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ts ≤ ∑
y∈Y\{Y}

κyst(y+1)s, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.10)

ts ≥ ∑
y∈Y\{Y}

κystys, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.11)

∑
y∈Y\{Y}

κys = ζρ, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.12)

esρd ≤ ∑
x∈X

αxses(x, y) + M(1− κys), ∀y ∈ Y , ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.13)

esρd ≥ ∑
x∈X

αxses(x, y)−M(1− κys), ∀y ∈ Y , ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D, (5.14)

Esρd = esρd + E(s−1)ρd, ∀s ∈ S(ρ)\{0}, ρ ∈ P(d), d ∈ D, (5.15)

Esρd = esρd + εH, ∀s ∈ S(ρ)
⋂
{0}, ρ ∈ P(0), (5.16)

Esρd = esρd + E(|S(r)|−1)(r)(d−1), ∀s ∈ S(ρ)
⋂
{0}, r ∈ P(d− 1), ρ ∈ P(d), d ∈ D\{0}, (5.17)

−(1− ζρ)M + εL ≤ Esρd ≤ εH + (1− ζρ)M, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D. (5.18)

D is a set that contains the remaining race days. P(d) is a set that contains the different routes
of day d. ζρ is a binary decision variable used to select the route of the day. zρ is the total distance
of route ρ.

S(ρ) is a set containing the segments on route ρ. ts is the start time on segment s. τs is the
duration it takes the solar car travelling velocity vs on segment s. τs, ts and vs are decision
variables.

The sets X and Y contains indices for the sample vertices used for linear piecewise approxi-
mation of the non linear functions, such as velocity, duration and energy consumption. αxs, κys

and hxs are Special Ordered Set (SOS) variables. αxs and κys are continuous variables and hxs is a
binary decision variable. M is a large number used for BigM constraints.

Continuous decision variable esρd is the energy consumed on segment s and Esρd is a continuous
decision variable that represents the total energy at the beginning of segment s. Constant value εH

is the battery capacity and εL is the predefined minimum energy the battery needs to prevent
damage.

Constraint set (5.2) ensures that one route is selected per day. Constraint set (5.3) only selects a
route that can be completed within the fixed time-limit of the day Td. M allows the constraints to
be satisfied when a route is not selected. Constraint set (5.4) forces the starting time to be the sum
of the previous segment start time and duration.

The duration τs is a function of the velocity and the segment distance, linear piecewise approxi-
mation of the function,

τs(vs) =
ds

vs
∀s ∈ S (5.19)
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is used. Constraint set (5.5), (5.6), (5.7), (5.8), (5.9) allow linear piecewise approximation of
function (5.19).

An alternative method to implement the multi-dimensional linear piecewise approximation is,
to replace (5.10) - (5.14) with (5.20) - (5.25).

∑
x∈X

∑
y∈Y

βxys = 1, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D (5.20)

vs = ∑
x∈X

∑
y∈Y

βxysvxs, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D (5.21)

ts = ∑
x∈X

∑
y∈Y

βxystys, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D (5.22)

esρd = ∑
x∈X

∑
y∈Y

βxysexys, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D (5.23)

∑
x∈X\{X}

∑
y∈Y\{Y}

κ
(u)
xys + κ

(l)
xys = 1, ∀s ∈ S(ρ), ρ ∈ P(d), d ∈ D (5.24)

βxys ≤ κ
(u)
xys + κ

(l)
xys + κ

(u)
x(y−1)s + κ

(l)
(x−1)ys + κ

(u)
(x−1)(y−1)s + κ

(l)
(x−1)(y−1)s

∀x ∈ X \ {0}, y ∈ Y \ {0}, s ∈ S(ρ), ρ ∈ P(d), d ∈ D
(5.25)

Constraint sets (5.20) - (5.25) is described as the Triangle method in [51] where (vxs, tys) are
sampling coordinates for x ∈ X , y ∈ Y on segment s and exyd is the function evaluated at
each breakpoint (vxs, tys). βxys ∈ [0, 1] is a continuous variable (one per breakpoint), used for
computing the convex combinations for the three-dimensional space. βxys should be defined as
a Special Ordered Set of Type 3 (SOS3) but current MILP solvers do not have such functionality,
thus we associate κ

(u)
xys, κ

(l)
xys with the upper and lower triangle in the rectangle, thus requiring

constraint sets (5.24) and (5.25). Other formulations of the Triangle method were also introduced
by [83–86].

5.5.1 Panel tilt optimisation

For the 2018 Sasol Solar Challenge, the North-West University solar car’s design decision was to
allow the attached solar panel to tilt around an axis parallel to the vehicle’s direction. Figure 23

shows a mechanical drawing of a solar car with a tilt-able panel. On the left of Figure 23, the
top view of a solar car is shown as a supplement to the front view on the right. The front view
on the right shows the maximum allowed solar panel tilt θtilt, where the tilt can be between
-30° and 30°. The solar panel on the vehicle can only rotate around the vector in which the vehicle
is moving. With the rotation axis limitation, the solar panel does not always need to be tilted.
The energy for rotating the solar panel from -30° and 30° is assumed to be 90 J. The optimisation
model does not have a memory of the previous segment’s panel position; this may not reflect
the exact energy usage of the panel tilt, but 90 J is considered neglectable, especially for large
segments and a battery capacity of 18 MJ. At the start of each segment, the panel is assumed to be
at 0°, but in reality, this depends on the previous segment. The panel tilt is not a variable in the
optimisation model, but there is a local optimisation for each segment to determine the optimal
consumed power given a certain speed, and starting 0°.
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θtilt

Top View Front View

Figure 23: Simplified mechanical drawing of a BEV with a tilt-able solar panel.

5.5.2 Drive-train efficiency
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Figure 24: Drive-train efficiency given a slope and velocity.
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The drive-train efficiency varies depending on the load the motor is currently under as-well
as the current speed. In most of the literature studies, the vehicle simulation assumes a fixed
drive-train efficiency. Figure 24 shows the drive-train efficiency graph, given a velocity and slope
on a segment. The slope is varied between -0.3 radians and 0.3 radians, where -0.3 is a downhill
slope and 0.3 is an uphill slope. Road slope are unlikely to be larger than 0.3 radians (around
17.2°). Overall the drive-train efficiency declines as the vehicle speed declines. As the slope
increases, the load on the motor is more and the efficiency also declines. The drive-train efficiency
values can usually be estimated with the help of the motor data-sheet and load measurements on
different slopes accounting for vehicle mass.

5.6 results

To demonstrate the generality of the model, the short track at Red Star Raceway (26° 4’ 30.4716” S,
28° 45’ 18.6444” E) shown in Figure 25 is used for a single day optimisation. Starting and ending
on vertex 2186 with one lap is approximately 1.5 km. The short-term optimisation uses the graph
in Figure 25 and includes local tilt optimisations. For the single-day and multi-day optimisation,
segments are aggregated. Multiple laps around the track are described as a single segment; for
the single day optimisation, nine laps are aggregated to a single segment.
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Figure 25: Short track input graph.

5.6.1 Single day optimisation for the Red Star Raceway

For the simulation aspect of the case study, a clear sky is assumed. The clear sky data
retrieved was in three-minute intervals, where the values between the intervals were linearly
interpolated. The race’s start time in the case study is 8:00 AM (SAT) and ends on 5:00 PM (SAT).
Figure 53, 54, 55 and 56 in Appendix D show the resulting energy graphs for the optimisation
run. The green dot on the graphs represents the energy usage calculated by the optimisation
model, and the red dot shows the energy usage calculated by the simulation. If only one dot is
shown, the dots are on the same location. Each graph shows the associated segment’s solution;
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this includes the velocity, start time and energy consumed on the segment. Each segment cannot
start before the previous segment. A simple visual inspection can verify this. The start time of
each segment increases as the vehicle moves to the next segment. The first and last segments are
short, less than 20 m, and their energy graphs show that the energy consumed is much lower than
the long segment counterparts. Segment 46 to 67 are long segments that describe the aggregated
nine laps around the track, each segment with a distance of 13.4 km. The start time on the energy
graph is displayed in seconds, where 0 is 8:00 AM (SAT). As the time-of-day progress, the effect
of solar irradiation is prominent for low velocities (under 10 m s−1). As the velocities increase, the
vehicle’s energy consumed is more significant than the energy gained from solar panels.

The maximum number of loops for the dataset can be adjusted in the preprocessing steps.
When the search space is narrowed, e.g. only consider 190 to 300 laps rather than 1 to 500 laps,
the optimisation run-time can be reduced significantly. Insights into the problem, such as the
maximum number of laps achievable when considering vehicle limits, can reduce the search space.

s ds(m) ηM Escl% Eact% eModel(J) eSim (J) vs(m s−1) ts(s) τs(s)
45 16.09 0.89 -0.00 0.00 -3007.12 -3007.12 19.44 0.00 0.83

46 13388.52 0.72 0.00 0.01 -1377521.22 -1377443.22 11.11 0.83 1204.97

47 13388.52 0.64 1.20 22.74 -1166936.97 -950741.68 7.05 1205.79 1977.65

48 13388.52 0.67 3.27 86.91 -1264337.59 -676441.61 8.33 3183.44 1606.62

49 13388.52 0.61 0.95 168.08 -272812.08 -101766.38 5.56 4790.07 2409.93

50 13388.52 0.77 -0.01 0.17 -932338.22 -933943.80 13.66 7200.00 983.50

51 13388.52 0.78 0.20 3.95 -950763.85 -914650.10 13.89 8183.50 963.97

52 13388.52 0.89 0.28 3.92 -1322407.66 -1272471.68 19.44 9147.47 688.55

53 13388.52 0.78 0.51 10.66 -950763.85 -859149.57 13.89 9836.03 963.97

54 13388.52 0.78 -0.00 0.00 -836740.14 -836740.14 13.89 10800.00 963.97

55 13388.52 0.89 0.11 1.60 -1225482.40 -1206210.72 19.21 11763.97 698.26

56 13388.52 0.78 0.16 3.67 -836740.14 -807109.80 13.89 12462.23 963.97

57 13388.52 0.78 0.24 5.33 -836740.14 -794410.16 13.89 13426.20 963.97

58 13388.52 0.72 0.32 11.05 -583198.88 -525162.58 11.11 14390.18 1204.97

59 13388.52 0.61 -0.09 3.36 485959.49 470169.55 5.68 15595.14 2375.06

60 13388.52 0.61 -0.33 12.89 515082.29 456267.32 5.56 17970.20 2409.93

61 13388.52 0.61 -0.64 33.56 455153.46 340780.39 5.56 20380.13 2409.93

62 13388.52 0.61 -0.51 56.54 256397.64 163788.21 5.56 22790.07 2409.93

63 13388.52 0.67 -0.02 0.80 -540319.24 -544685.50 8.56 25200.00 1573.30

64 13388.52 0.67 -0.62 17.66 -517986.38 -629053.96 8.33 26773.30 1606.62

65 13388.52 0.67 -1.30 31.04 -517986.38 -751134.99 8.33 28379.92 1606.62

66 13388.52 0.72 -0.41 6.93 -987282.05 -1060829.34 11.11 29986.54 1204.97

67 13388.52 0.72 -0.83 13.18 -987282.05 -1137211.51 11.11 31191.51 1204.97

68 19.58 0.61 -0.00 25.38 -1946.51 -2608.61 5.56 32396.48 3.52

Table 14: Case study results for the single day optimisation run. Segments labelled 46 - 67 are nine laps of
the Red Star Raceway, with ds the distance travelled on each segment in meter. The drive-train
efficiency of the vehicle associated with the segment and speed vs is given by ηM. The energy
consumed, calculated by the simulation is eSim where as the energy consumed according to the
optimisation model is eModel .

Table 14 shows more details for the single day optimisation, this includes, the durations, start
times energy used and energy errors. Segment 45 and 68 are dummy segments for the start and
end, where segment 46 to 67 are nine laps of the Red Star Raceway. There are two different energy
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errors displayed in Table 14, one is scaled to the battery and the other is relative to the simulated
values. The scaled energy error Escl is given by,

Escl =
eSim − eModel

εH
× 100%, (5.26)

this approximates the overall influence on the State of Charge (SoC). The actual energy error
Eact % is given by,

Eact =
|eSim − eModel |
|eSim|

× 100%, (5.27)

and is the error between the simulated and optimised values. The actual energy error was as high
as 168.08%, but it will not have such a large effect on the SoC because the consumed energy is
relatively low. Segment 48 had an scaled energy error of 3.27%, which is large relative to the other
segments and can be seen in Figure 53d where the simulated energy is much higher than the
optimisation energy. The scaled energy needs to be used in conjunction with the actual energy
error for race strategy decision making.

Table 14 can be used to verify that the start times and duration adhere to the model constraint,

τ(s−1) + t(s−1) = ts, ∀s ∈ S(ρ), ∀ρ ∈ P(d), ∀d ∈ D. (5.28)

The drive-train efficiency ηM used in the simulation is also displayed in Figure 24. The drive-train
efficiency was above 0.6 because the simulated vehicle drove at speeds above 20 km h−1 on all
segments. The velocity of the vehicle varied between 20 km h−1 and 70 km h−1. In most cases
where the vehicle speed is 20 km h−1, energy was gained from the sun. The accumulated scaled
error is 2.48%, the simulated SoC will be 2.48% more than in the optimisation run, this can vary
and caution should be taken when the accumulated scaled energy is negative.

5.6.2 Tilt optimisation per segment

Five laps of the Red Star Raceway were used to generate the results for the tilt optimisation;
the main reason for this is the vehicle’s start time increases as more energy is available due to
the solar panel tilt. The distance the vehicle travels is the same with and without the solar panel
tilt accounted for because of the small distances. This dataset is only used to demonstrate the
effect a solar panel with the ability to tilt has. Figure 26 shows the sum of the energy consumed
and gained by the vehicle on each segment (since both optimisation runs result in the same
segments in this case). As time goes on, each segment’s start time with solar panel tilt accounted
for diverges from the segments where tilt was zero. Figure 26 shows there is an advantage to tilt
the solar panel. The solar panel tilt flattens the maximum amplitude of the total energy gained
and consumed. As time passes and the earth rotates, the solar panel tilt’s effect is less as the start
times near midday; this is clear from the increase in energy gained from the solar panel.

Figure 27 shows how the sun angle on the panel changes when the solar panel is rotated around
the axis of the segment. Figure 27 shows that the start time on each segment of the vehicle is
before the same segment when there is no tilt allowed as a result when the tilt is zero for both
optimisation runs on the same segment, the sun angle is lower when tilt is allowed. The start
time on the first segment is early in the morning, and the clear sky irradiation usually peaks
midday. As time passes, the sun angle on the panel will increase on a clear sky until midday. The
variations on the sun angle on the panel are due to the nature of the dataset; it is around a track,
so the vehicle makes a full rotation around the normal vector of a zero tilted solar panel.
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Figure 26: Energy consumed on segment s, with and without solar panel tilt.

5.6.3 Multi-day optimisation across South Africa

The dataset starts in Pretoria on the first day and ends in Cape Town on day nine. The dataset
is fictitious but very similar to the route of the 2018 Sasol Solar Challenge. The segment lengths
of the dataset over multiple days are much longer than for the single day optimisation. At the
start of each day, the race drive begins at 8:00 AM (SAT), and the vehicle must be at the starting
location of the next day on or before 5:00 PM (SAT). With the current model, the solar-powered
vehicle must drive without the intervention of loading it on a trailer. Throughout the simulation,
it is assumed that the vehicle does not break down at any time. On the first day, the vehicle starts
in Pretoria and drives to Kroonstad, and it drives to a different location each day until the vehicle
reaches Cape Town. Figure 28 shows a crude representation of the Sasol Solar Challenge route
in 2018. The input graph to each day is provided in Appendix C, and arcs going from and to a
vertex that does not follow an obvious path indicates where the vehicle may drive multiple times,
i.e. a loop. The weather data used for the simulations begin at 8:00 AM (SAT), 4 February 2021,
and ends on 5:00 PM (SAT), 13 February 2021.

Table 15 shows the results for the multi-day optimisation run, with each row corresponding to
a road segment. The solver time-limit was set to one hour. Multiple solutions were found within
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Figure 27: Sun angle on the vehicle for segment s, with and without solar panel tilt.

one hour but still had a sizeable relative gap of 108.4%, from which the best objective value among
solutions found was 1851.4 km. Most of the scaled energy error (as defined in Equation 5.6.1) has
an absolute energy error lower than 5% except for where velocities were under 5 m s−1. The actual
energy error shows there is a significant error for velocities under 10 m s−1; this error is caused by
the form of the energy graphs shown in Appendix E, as the velocity increase, the surface flattens.
The start time ts is the seconds passed since the start of the race day, from 8:00 AM (SAT). The end
time needs to be equal to the start time plus the duration; this verifies that the time constraints are
correct. The drive-train efficiency is as low as 0.3 when the vehicle is driving slowly. The energy
consumed after each segment is given by emodel , and always needs to be between 20% and 100% of
the battery energy capacity (18 MJ). On day one of the race, the vehicle should drive one loop. On
day two to five, the vehicle should only drive the route and skip the loops. On day six and eight,
the vehicle should drive one loop, and on day seven and nine, the vehicle should only drive the
route.
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Figure 28: Sasol Solar Challenge 2018 route [87].

Figure 29 shows the results for the multi-day dataset1 but for different times of the year. The
solver time-limit was set to one-hour for all the datasets in table 15, and was solved with IBM
ILOG CPLEX 12.8, with 64 GB memory and AMD RYZEN™ 3900XT@3.8GHz processor. The start
time for each dataset is on the second day of each month in 2021. The race starts at 8:00 AM (SAT)
and ends at 5:00 PM (SAT) on the same day. The time of year, the solar-powered vehicle is driving
through South Africa affects the total distance the vehicle can drive. During the summer2 the
solver found a solution much easier and with a travelling distance of more than 1800 km within
the one hour time-limit. There is an apparent increase in travel distance from the start of spring3

up until the end of spring. There is a declination in the total distance the vehicle can drive in
autumn4. During winter5 the vehicle drives the shortest distance, only 857 km. The vehicle’s
driving range correlates with the irradiation cycle during a year, e.g. lower irradiation during
winter and higher irradiation during summer. Since there was a one-hour time-limit, some of the

1 The dataset starts in Pretoria on the first day and ends in Cape Town on day nine, it is the dataset used in Table 15.
2 Summer is between 1 December to 28/29 February.
3 Spring is between 1 September and 30 November.
4 Autumn is between 1 March and 31 May.
5 Winter is between 1 June and 31 August
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Table 15: Results for multi-day optimisation across South Africa.
d s ts (s) τs (s) End (s) vs(m s−1) Escl % Eact % ηM EModel(J)

1 0 0.00 4679.77 4679.77 11.11 0.00 -0.00 0.72 12264156.93

1 1 4679.77 6556.74 11236.52 11.11 2.46 -16.31 0.72 9104967.60

1 2 11236.52 571.74 11808.26 27.78 0.03 -0.21 0.92 6481514.38

1 3 14400.00 2891.84 17291.84 5.56 0.00 0.00 0.61 7304077.76

1 4 17291.84 10219.41 27511.25 5.56 -1.35 -11.63 0.61 9641246.63

1 5 27511.25 4888.75 32400.00 10.44 -0.70 4.91 0.71 7220742.45

2 104 0.00 14912.31 14912.31 3.98 -31.39 -116.30 0.47 17728537.32

2 105 14912.31 5876.04 20788.35 8.33 -0.06 1.83 0.67 17147088.31

2 106 21600.00 6509.42 28109.42 9.53 -1.64 14.84 0.69 15454180.45

2 107 28109.42 4290.58 32400.00 8.33 -3.05 32.83 0.67 14331112.16

3 158 0.00 10800.00 10800.00 6.74 -4.96 367.12 0.63 14980627.88

3 159 10800.00 6948.80 17748.80 5.56 1.13 17.41 0.61 15943045.27

3 160 18000.00 3600.00 21600.00 7.92 -0.66 17.63 0.66 15385003.93

3 161 21600.00 5609.17 27209.17 5.56 -1.17 -11.30 0.61 17465159.90

4 217 0.00 4341.65 4341.65 9.61 -0.28 1.31 0.69 13695178.79

4 218 4341.65 5154.47 9496.12 11.11 1.09 -5.39 0.72 9844326.64

4 219 9496.12 12293.11 21789.23 2.78 2.08 5.79 0.31 15939854.46

4 220 21789.23 7010.77 28800.00 5.56 -0.16 1.75 0.61 14310648.80

4 221 28800.00 3600.00 32400.00 15.71 0.04 -0.51 0.81 13014385.48

5 222 0.00 3391.15 3391.15 22.22 0.00 -0.00 0.90 3673899.76

5 223 3391.15 17749.75 21140.90 3.20 -46.17 -148.69 0.37 17574453.57

5 224 21140.90 7659.10 28800.00 8.33 -1.94 -453.13 0.67 18000000.00

5 225 28800.00 3600.00 32400.00 6.66 -0.32 8.29 0.63 17357198.72

6 230 0.00 9316.27 9316.27 5.19 -5.65 80.28 0.60 17107490.77

6 231 9316.27 2391.32 11707.59 13.89 1.01 -7.60 0.78 14523784.10

6 232 11707.59 1840.52 13548.11 11.11 0.10 -15.99 0.72 14395251.81

6 233 13548.11 1189.61 14737.71 16.67 0.21 -1.89 0.82 12369927.63

6 234 14737.71 3262.29 18000.00 5.56 0.02 0.61 0.61 12934403.22

6 235 18000.00 7736.23 25736.23 11.11 0.00 -0.00 0.72 8970617.29

6 236 25736.23 6663.77 32400.00 11.98 -4.35 13.13 0.74 3793685.00

7 345 0.00 17083.68 17083.68 2.42 -37.98 -147.30 0.31 15271745.75

7 346 17083.68 3303.22 20386.90 11.11 0.04 -0.68 0.72 14077139.58

7 347 21600.00 4963.82 26563.82 13.89 0.00 -0.00 0.78 9218258.46

7 348 26563.82 2979.75 29543.57 12.14 -2.42 15.24 0.74 6798444.12

7 349 29543.57 2856.43 32400.00 13.89 -0.54 2.93 0.78 3600000.00

8 350 0.00 17500.97 17500.97 2.27 -41.04 -172.34 0.29 15273635.39

8 351 18000.00 7797.42 25797.42 5.56 -0.00 -0.00 0.61 16984973.82

8 352 28800.00 1721.21 30521.21 25.00 0.00 -0.00 0.91 10580440.47

8 353 30521.21 1878.79 32400.00 24.83 -0.79 1.98 0.91 3600000.00

9 392 0.00 18000.00 18000.00 1.77 -56.49 -249.32 0.23 17847573.11

9 393 18000.00 13241.54 31241.54 2.69 2.14 107.42 0.30 17821036.11

9 394 31241.54 756.34 31997.88 30.56 -0.45 2.17 0.92 14130603.24

9 395 31997.88 402.12 32400.00 33.33 -0.21 1.10 0.90 10824302.19

datasets did not solve optimally and causes some variation in the total distance the vehicle can
drive, but the overall trend is clear.
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Figure 29: Multi-day results for every month in 2021.

5.7 summary

Having a solar panel that can tilt can be beneficial, especially in the mornings and late day, but
care should be taken when implementing this. Practically the vehicle can flip with wind from the
side when the vehicle is lightweight, and the solar panel is tilted so that it intercepts the wind.
The optimisation model is practical for single-day optimisation but may not solve to optimality
for multi-day optimisation. Warm-starting the model with the solution without loops had a
significant impact on the computation time, along with making the linear piecewise constraints
depend on the route chosen, e.g. the velocity and duration is only a convex combination when the
route was selected. The energy graphs show it requires more points at low speeds to minimise
the actual energy error. The optimisation model depends heavily on a solar-powered vehicle
simulation, and improvements to the simulation will generate more practical energy graphs.

The optimisation can indicate how many loops should be taken each day, each route in the model
corresponds to the number of loops that can be driven. Weather data used in this optimisation
run were obtained using solarpy for clear sky radiation and Weatherbit for weather forecasts.

https://weatherbit.io
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Overall the model can assist in the decision making regarding the race strategy for Sasol Solar
Challenge, or similar events.





6
C O N C L U S I O N A N D F U T U R E W O R K

6.1 summary of contributions

This study focused on model implementations to optimise route planning for Battery Electric
Vehicles (BEVs). Simulations and optimisation models were described from first principles, but
little detail was given on the effect various factors had on the performance of the BEV. It was more
important to describe a generalised model that accounts for most factors. Two different models
were proposed in the thesis: the path-based and flow conservation models. The flow conservation
model describes the model with fewer binary variables at the expense of more BigM constraints,
whereas the path-based model requires binary variables for all possible paths. The path-based
model has the benefit of being used as a heuristic since the number of paths can be limited;
the paths are determined by a k-shortest path algorithm in this thesis which is a generalised
form of Dijkstra’s shortest path algorithm. An algorithm that shows the parallel nature of the
path-based model is given, but there is no real computational benefit when the number of paths is
more than the parallel processors. A smaller formulation, such as the flow conservation model, is
more beneficial.

Two different methods for modelling the energy graphs for each segment are used, a rectangular
method and a triangle method. The triangle method divides the three-dimensional surface into
triangles. Each triangle has a selection variable associated with it. Any point on the triangle can
be written as a convex combination of the associated points of the triangle. The triangle method is
described by Special Ordered Set of Type 3 (SOS3). At the time of writing, Mixed Integer Linear
Programming (MILP) solvers did not have any speed-ups when using SOS3. The rectangular
method is described by multiple Special Ordered Set of Type 2 (SOS2). The three-dimensional
graph is divided into different rectangles, where inclusion constraints define the widths.

The generalised path-model can be applied to similar problems, such as the Sasol Solar
Challenge with slight modification for the original path-based model. A case study for the Sasol
Solar Challenge is provided, with specific North-West University vehicle features, such as solar
panel tilt. The path-based model is adapted to specify multiple days, with the total energy
remaining in the battery carrying over to the next day, with a starting and ending time for each
day. After finding a solution, the number of loops and velocity on each segment can be provided
as a race strategy.

The models can be used to improve the design of a solar vehicle by testing the effect of
various vehicle parameters on different terrains and weather conditions. There are some notable
observations while solving the different datasets; more details are given in the next section.

6.2 important observations

One of the most notable observations was that the runtime and solution quality of datasets varies
with different weather conditions when the BEV had a solar panel attached. When it is summer
in the general vicinity captured by the dataset, the model solved faster compared to when it is

87
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winter; this is likely because of lower overall irradiation over a day. With higher overall irradiation,
the BEV can travel at higher speeds during day time.

When the road segments (or arcs in the case of the flow conservation model) are longer
than 50 km, solutions that might exist are overlooked because of a constant velocity throughout
the segment. Using finer segment granularity with some datasets showed improved solution
accuracy. Initially, the datasets were solved with twelve velocity steps, but some datasets were
infeasible in such conditions because of the coarse granularity at low speeds. Increasing the
velocity steps resulted in longer runtimes, but at least it produced a solution. Another issue with
long segments is the risk of increasing the energy consumed’s error on those segments. There
are two ways to compare the model validity and the energy used on a segment; one way is to
compute error on the expected results of the model, and the other is to compare it to real-world
data. Within this thesis, the error was computed for the model’s expected results, which is a good
starting point when real-world data is unavailable. As the time of day change, irradiation on
the segment changes; this is not accounted for in the models directly. The mid longitude and
latitude of a segment, with the start time, is used to determine the irradiation. This approach
requires short segments to improve accuracy compared to granular simulations that track the
segment’s longitude and latitude as the vehicle progresses. The energy error compared to the
expected model output is acceptable for both the triangle-and block-based energy graphs, usually
and average energy error under 5%.

The electronics, such as the vehicle’s motor controller and lights, were not accounted for;
additional constant energy leaches can be defined within the simulation model but were left
out. The model supports charging stations that allow various charge functions. In some datasets,
charging stations were included; this was especially useful when the BEV did not have a solar
panel attached.

6.3 future work

The thesis shows some useful tools for route planning, but as mentioned, the weather conditions
can influence the overall runtime significantly. The more applicable use-case for such an imple-
mentation is when used as a decision support tool for design decisions. Practical trade-off studies
can be done by using this tool as a benchmark with different terrains, vehicle characteristics and
weather conditions.

The input data is modelled as graphs, making it trivial to transform the implementation into a
solution for various applications, such as route planning for gliders. Gliders also have multiple
routes that can be followed when considering weather conditions, and thermal columns can be
modelled in a similar way as charging stations. Future work includes simulating and applying
these model implementations to gliders. Optimisation models described in the thesis should also
be able to assist with the design decisions of gliders.

The model described in Chapter 5 is a variation of the general path-based model in Chapter 3;
future work includes testing the model implementation against real-world results. The BEV
simulation and characteristics will be refined in the next Sasol Solar Challenge to improve result
accuracy.
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A
P R A C T I C A L R E S U LT S

Table 16: Results for initial practical models.
Model Runtime Objective Value Velocity Steps %error Relative Gap

FC-TRI 0.150743 59808.3 2 21.5209 0

FC-TRI 0.351878 39205.2 4 -5.03955 0

FC-TRI 0.818357 38514.4 8 -3.59834 0

FC-TRI 2.60214 38085.4 16 -1.33566 0

FC-TRI 6.5506 37934 32 -0.14608 7.0434e-05

FC-TRI 42.0892 37919.9 64 -0.0633541 0

P-TRI 0.1595 59808.3 2 21.5209 0

P-TRI 0.387745 39205.2 4 -5.03955 0

P-TRI 0.922885 38514.4 8 -3.59834 0

P-TRI 2.61813 38085.4 16 -1.33566 0

P-TRI 12.8757 37931.3 32 -0.16019 0

P-TRI 59.4802 37919.9 64 -0.0633541 0

FC-BLK 0.068187 59981.7 2 20.0669 0

FC-BLK 0.058246 39228.2 4 -4.91845 0

FC-BLK 0.103338 38542.4 8 -3.4687 0

FC-BLK 0.194955 38106.3 16 -1.24784 3.99844e-05

FC-BLK 0.16796 37934 32 -0.14608 0

FC-BLK 0.241658 37919.9 64 -0.0633541 0

P-BLK 0.05259 59981.7 2 20.0669 0

P-BLK 0.06235 39228.2 4 -4.91845 0

P-BLK 0.100923 38542.4 8 -3.4687 0

P-BLK 0.168376 38106.3 16 -1.24784 3.99844e-05

P-BLK 0.201486 37934 32 -0.14608 0

P-BLK 0.283281 37919.9 64 -0.0633541 0
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B
V I S UA L I S AT I O N S O F D ATA S E T S U S E D F O R G E N E R A L M O D E L S

Visualisation of datasets used for general models are provided here. These datasets are not to
scale. The complete datasets as JSON graphs can be found at BEVDatasets1.

1 The above link is click-able. For completeness the text is also provided: https://github.com/baggins800/bevroutes
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Figure 30: small001 visualisation.



visualisations of datasets used for general models 101

17

18
19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35 36

38

3940

4142

43

Figure 31: small002 visualisation.



102 visualisations of datasets used for general models

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

60

61

62
63

64

65

66

67

68
69

70

71

72

73

74

75

76 77

7879

80

81
82

83

84
85

86

87
88

89

90

91

92

93

94

95

96

97

98 99

100

101

102 103

104

105

Figure 32: small003 visualisation.



visualisations of datasets used for general models 103

110

134

147

153

157158

160
161

162

163

165

166

167

168

171

175

183
184

190

194203

204205

206

207

208

209

210 211
212

213

214

215

216

217

218

219

220

221

222

223

224
225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245246

247

248

249

250

1341

1342

1343

2304

2305

2306

2307

2308

2309

2310

2311

2312

Figure 33: small004 visualisation.



104 visualisations of datasets used for general models

251

252

253

254

255

256

257

258

259

260

261

262

263

264

Figure 34: small005 visualisation.



visualisations of datasets used for general models 105

265

266

267

268

269

270

271

272

273

274

275

276

277

278279

280

281

282

283

284

285

286

287

288

289

290

291

1344

1345

1346

1347

1348

1349

2313

2314

2315

2316

2317

2318

2319

2320

2321
2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

Figure 35: small006 visualisation.



106 visualisations of datasets used for general models

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

23822383
2384

23852386

23872388

2389

2390

2391

2392

2393

2394

239523962397
2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

Figure 36: small007 visualisation.



visualisations of datasets used for general models 107

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325 326

327

328

329

330
331

332

333

334

335

336

337

2361
2362 2363 2364

2365 2366

2367

2368

23692370

2371

2372

2373

2374

2375 2376
2377

2378

237923802381

Figure 37: small008 visualisation.



108 visualisations of datasets used for general models

338

339

340

341

342

343

344

345

346
347

348

349

350

351

352

353

354

Figure 38: small009 visualisation.



visualisations of datasets used for general models 109

355
356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Figure 39: small010 visualisation.



110 visualisations of datasets used for general models

392

393

394

395

396

397

398

399

400

401
402

403

404
405

406

407

408

409

410 411
412

413

414

415

416

417

418

419

420

421

422 423

424

425

426

427

428
429430 431

432

433

434

435
436

437

438
439

440

441

442

443

444

445

446

447

448

449

450

451
452

453

454

455 456

457

458

459

460

461

466

470

471

472

473

474

475

476

477

478

479

485

489

490

491

493

494

495

496

497

498

499

500

501

502

503

504

505

508

509

510

511

512513

514

515

517
518519

520

521

522
523

524

525

526
527

528

529

530

531

532

533
534

535

536

537

538

539540

541

542

543

544

545546

547

548

549550

551

552
553554

555

556557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578 579

580

581

582

583

584

585

586

587

588

589
590

591

592

593

594

595

596

597

598

599

600

601

602
603

604

605

606
607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625
626627

628
629

630
631

632
633634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677 678

679
680

681
682

683 684 685 686

687 688
689 690

691
692

693

694

695
696

697

698
699

700
701

702
703704

705

706
707

708
709

710

711

712

713
714

715

716

717

718

719
720

721

722
723

724725

726727

728
729

730

731

732

733

734

735

736

737738

739

740
741

742

743
744

745

746

747

748

749

750

751

752753754

755

756

757

758759
760

761

762763

764

765

766
767

768

769

770
771

772
773
774

775

776
777

778
779780

781
782

784
785

786

787

788
789

790

791

792

793

794

795

796

797

798

799
800

801

802

803804

805

806807
808809

810

811

812

814
815

816817818

819
820

821

822

823

824825
826827

828
829830

831
832833

834
835

836

837
838

839
840841

842

843

844

Figure 40: medium001 visualisation.
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Figure 41: medium002 visualisation.
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Figure 42: medium003 visualisation.
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Figure 43: medium004 visualisation.
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Visualisation of datasets used for multi-day optimisation are provided here. These datasets are not
to scale. The complete datasets as JSON graphs can be found at Multi-day optimisation datasets1.

1 The above link is click-able. For completeness the text is also provided: https://github.com/baggins800/mdo
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Figure 44: Day 1 graph visualisation.
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Figure 45: Day 2 graph visualisation.
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Figure 46: Day 3 graph visualisation.
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Figure 47: Day 4 graph visualisation.



120 visualisations of datasets used for multi-day optimisation

2598

2650

2651

2652

2653

Figure 48: Day 5 graph visualisation.
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Figure 49: Day 6 graph visualisation.
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Figure 50: Day 7 graph visualisation.
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Figure 51: Day 8 graph visualisation.
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Figure 52: Day 9 graph visualisation.
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(a) Energy graph for segment 45.
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(b) Energy graph for segment 46.
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(c) Energy graph for segment 47.
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(d) Energy graph for segment 48.
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(e) Energy graph for segment 49.
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(f) Energy graph for segment 50.
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Figure 53: Energy graphs for segment 45 to 50.
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(a) Energy graph for segment 51.
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(b) Energy graph for segment 52.
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(c) Energy graph for segment 53.
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(d) Energy graph for segment 54.
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(e) Energy graph for segment 55.
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(f) Energy graph for segment 56.
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Figure 54: Energy graphs for segment 51 to 56.
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(a) Energy graph for segment 57.
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(b) Energy graph for segment 58.
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(c) Energy graph for segment 59.
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(d) Energy graph for segment 60.
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(e) Energy graph for segment 61.
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(f) Energy graph for segment 62.
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Figure 55: Energy graphs for segment 57 to 62.
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(a) Energy graph for segment 63.
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(b) Energy graph for segment 64.
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(c) Energy graph for segment 65.
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(d) Energy graph for segment 66.
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(e) Energy graph for segment 67.
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(f) Energy graph for segment 68.
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Figure 56: Energy graphs for segment 63 to 68.
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(a) Energy graph for segment 0.
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(b) Energy graph for segment 1.
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(c) Energy graph for segment 2.
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(d) Energy graph for segment 3.
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(e) Energy graph for segment 4.
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(f) Energy graph for segment 5.
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Figure 57: Energy graphs for segment 0 to 5 on day 1.
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(a) Energy graph for segment 104.
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(b) Energy graph for segment 105.
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(c) Energy graph for segment 106.
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(d) Energy graph for segment 107.
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Figure 58: Energy graphs for segment 104 to 107 on day 2.
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(a) Energy graph for segment 158.
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(b) Energy graph for segment 159.
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(c) Energy graph for segment 160.
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(d) Energy graph for segment 161.
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Figure 59: Energy graphs for segment 158 to 161 on day 3.
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(a) Energy graph for segment 217.
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(b) Energy graph for segment 218.
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(c) Energy graph for segment 219.
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(d) Energy graph for segment 220.
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(e) Energy graph for segment 221.
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Figure 60: Energy graphs for segment 217 to 221 on day 4.
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(a) Energy graph for segment 222.
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(b) Energy graph for segment 223.
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(c) Energy graph for segment 224.
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(d) Energy graph for segment 225.
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Figure 61: Energy graphs for segment 222 to 225 on day 5.
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(a) Energy graph for segment 230.
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(b) Energy graph for segment 231.
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(c) Energy graph for segment 232.
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(d) Energy graph for segment 233.
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(e) Energy graph for segment 234.
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(f) Energy graph for segment 235.
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(g) Energy graph for segment 236.
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Figure 62: Energy graphs for segment 230 to 236 on day 6.
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(a) Energy graph for segment 345.
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(b) Energy graph for segment 346.
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(c) Energy graph for segment 347.
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(d) Energy graph for segment 348.
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(e) Energy graph for segment 349.
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Figure 63: Energy graphs for segment 345 to 349 on day 7.
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(a) Energy graph for segment 350.
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(b) Energy graph for segment 351.
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(c) Energy graph for segment 352.
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(d) Energy graph for segment 353.
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Figure 64: Energy graphs for segment 350 to 353 on day 8.
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(a) Energy graph for segment 392.
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(b) Energy graph for segment 393.
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(c) Energy graph for segment 394.
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(d) Energy graph for segment 395.
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Figure 65: Energy graphs for segment 392 to 395 on day 9.
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